Skip to main content
Log in

Modelling periodic oscillation in gene regulatory networks by cyclic feedback systems

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we develop a new methodology to analyze and design periodic oscillators of biological networks, in particular gene regulatory networks with multiple genes, proteins and time delays, by using negative cyclic feedback systems. We show that negative cyclic feedback networks have no stable equilibria but stable periodic orbits when certain conditions are satisfied. Specifically, we first prove the basic properties of the biological networks composed of cyclic feedback loops, and then extend our results to general cyclic feedback network with less restriction, thereby making our theoretical analysis and design of oscillators easy to implement, even for large-scale systems. Finally, we use one circadian network formed by a period protein (PER) and per mRNA, and one biologically plausible synthetic gene network, to demonstrate the theoretical results. Since there is less restriction on the network structure, the results of this paper can be expected to apply to a wide variety of areas on modelling, analyzing and designing of biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbai, N., Leibler, S., 2000. Biological rhythms: circadian clocks limited by noise. Nature 403, 267.

    Google Scholar 

  • Becskei, A., Serrano, L., 2000. Engineering stability in gene networks by autoregulation. Nature 405, 590–593.

    Article  Google Scholar 

  • Belair, J., Campbell, S.A., Driessche, P., 1996. Frustration, stability, and delay-induced oscillations in a neural network model. SIAM J. Appl. Math. 56, 245–255.

    Article  MathSciNet  Google Scholar 

  • Campbell, S.A., Ruan, S., Wei, J., 1999. Qualitative analysis of a neural network model with multiple time delays. Int. J. Bifurcation Chaos 9, 1585–1595.

    Article  MathSciNet  Google Scholar 

  • Chen, L., Aihara, K., 2002a. Stability of genetic regulatory networks with time delay. IEEE Trans. Circuits Syst. I. 49, 602–608.

    Article  MathSciNet  Google Scholar 

  • Chen, L., Aihara, K., 2002b. A model of periodic oscillation for genetic regulatory systems. IEEE Trans. Circuits Syst. I. 49, 1429–1436.

    Article  MathSciNet  Google Scholar 

  • Chen, L., Wang, R., Kobayashi, T., Aihara, K., 2004. Dynamics of gene regulatory networks with cell division cycles. Phys. Rev. E 70, 011909, 1–13.

    MathSciNet  Google Scholar 

  • Crosthwaite, S.K., Dunlap, J.C., Loros, J.J., 1997. Neurospora wc-1 and wc-2: transcription, photoresponses, and the origin of circadian rhythmicity. Science 276, 763–769.

    Article  Google Scholar 

  • Diekmann, O., van Gils, S.A., Verduyn Lunel, S.M., Walther, H.O., 1995. Delay Equations Functional-, Complex-, and Nonlinear Analysis. Springer-Verlag.

  • Dunlap, J.C., 1999. Molecular bases for circadian clocks. Cell 96, 271–290.

    Article  Google Scholar 

  • Elowitz, M.B., Leibler, S., 2000. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338.

    Article  Google Scholar 

  • Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S., 2002. Stochastic gene expression in a single cell. Science 297, 1183–1186.

    Article  Google Scholar 

  • Gardner, T.S., Cantor, C.R., Collins, J.J., 2000. Construction of a genetic toggle switch in Escherichia Coli. Nature 403, 339–342.

    Article  Google Scholar 

  • Glass, L., Kauffman, S.A., 1973. The logical analysis of continuous, non-linear biochemical control networks. J. Theor. Biol. 39, 103–129.

    Article  Google Scholar 

  • Goldbeter, A., 1995. A model for circadian oscillations in the Drosophila period protein (PER). Proc. R. Soc. Lond. B 261, 319–324.

    Google Scholar 

  • Golden, S.S., Ishiura, M., Johnson, C.H., Kondo, T., 1997. Cyanobacterial circadian rhythms. Ann. Rev. Plant Physiol. Plant Mol. Biol. 48, 327–354.

    Article  Google Scholar 

  • Gonze, D., Leloup, J.-C., Goldbeter, A., 2000. Theoretical models for circadian rhythms in Neurospora and Drosophila. C. R. Acad. Sci. Paris, III 323, 57–67.

    Google Scholar 

  • Goodwin, B.C., 1965. Oscillatory behavior in enzymatic control process. Adv. Enzyme Regua. 3, 425–438.

    Article  Google Scholar 

  • Gouze, J.-L., 1998. Positive and negative circuits in dynamical systems. J. Biol. Syst. 6, 11–15.

    Article  MATH  Google Scholar 

  • Hall, J.C., 1998. Genetics of biological rhythms in Drosophila. Adv. Genet. 38, 135–184.

    Article  Google Scholar 

  • Hasty, J., Isaacs, F., Dolnik, M., McMillen, D., Colins, J.J., 2001. Designer gene networks: towards fundamental cellular control. Chaos 11, 207–220.

    Article  Google Scholar 

  • Hunding, A., 1974. Limit cycles in enzyme systems with nonlinear negative feedback. Biophys. Struct. Mech. 1, 47–54.

    Article  Google Scholar 

  • Kobayashi, T., Chen, L., Aihara, K., 2002. Design of genetic switches with only positive feedback loops. In: Proceedings of 2002 IEEE Computer Society Bioinformatics Conference. pp. 151–162.

  • Kobayashi, T., Chen, L., Aihara, K., 2003. Modelling genetic switches with positive feedback loops. J. Theor. Biol. 221, 379–399.

    Article  MathSciNet  Google Scholar 

  • Kolmanovskii, V., Myshkis, A., 1999. Introduction to the Theory and Applications of Functional Differential Equations. Kluwer Academic Publishers.

  • Leloup, J.-C., Goldbeter, A., 1998. A model for circadian rhythms in Drosophila incorporating the formation of a complex between the PER and TIM proteins. J. Biol. Rhythms 13, 70–87.

    Article  Google Scholar 

  • Leloup, J.-C., Goldbeter, A., 2000. Modelling the molecular regulatory mechanism of circadian rhythms in Drosophila. BioEssays 22, 84–93.

    Article  Google Scholar 

  • Mallet-Paret, J., Sell, G.R., 1996a. Systems of differential delay equations: floquet multipliers and discrete Lyapunov Functions. J. Differ. Eqns. 125, 385–440.

    Article  MathSciNet  Google Scholar 

  • Mallet-Paret, J., Sell, G.R., 1996b. The Poincaré-Bendixson theorem for monotone cyclic feedback systems with delay. J. Differ. Eqns. 125, 441–489.

    Article  MathSciNet  Google Scholar 

  • Mikkar, A.J., Carre, I.A., Strayer, C.A., Chua, N.H., Kay, S.A., 1995. Circadian clock mutants in Arabidopsis identified by iuciferase imaging. Science 267, 1161–1163.

    Google Scholar 

  • Smith, H., 1991. Periodic tridiagonal competitive and cooperative systems of differential equations. SIAM J. Math. Anal. 22, 1102–1109.

    Article  MATH  MathSciNet  Google Scholar 

  • Smith, H., 1995. Monotone Dynamical Systems, vol. 41. American Mathematical Society, Providence, RI.

    Google Scholar 

  • Swain, P.S., Elowitz, M.B., Siggia, E.D., 2002. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl. Acad. Sci. 99, 12795-12800.

    Google Scholar 

  • Tei, H., Okamura, H., Shigeyoshi, Y., Fukuhara, C., Ozawa, R., Hirose, M., Sakaki, Y., 1997. Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 389, 512–516.

    Article  Google Scholar 

  • Walther, H.O., 1995. The 2-dimensional attractor of x(t) = −μx(t) + ƒ (x(t–1)). Memoirs of the Amer. Math. Soc., 544. Amer. Math. Soc, Providence, RI.

    Google Scholar 

  • Wang, R., Jing, Z., Chen, L., 2004a. Periodic oscillators in genetic networks with negative feedback loops. WSEAS Trans. Math. 3, 150–156.

    Google Scholar 

  • Wang, R., Zhou, T., Jing, Z., Chen, L., 2004b. Modelling periodic oscillation of biological systems with multiple time scale networks. Syst. Biol. 1, 71–84.

    Article  Google Scholar 

  • Wu, J., Zou, X., 1995. Patterns of sustained oscillations in neural networks with delayed interactions. Appl. Math. Comput. 73, 55–75.

    Article  MathSciNet  Google Scholar 

  • Zhou, T., Chen, L., Aihara, K., 2004. Intercellular communications induced by random fluctuations (submitted for publication).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luonan Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, R., Jing, Z. & Chen, L. Modelling periodic oscillation in gene regulatory networks by cyclic feedback systems. Bull. Math. Biol. 67, 339–367 (2005). https://doi.org/10.1016/j.bulm.2004.07.005

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2004.07.005

Keywords

Navigation