Skip to main content
Log in

Similarity between condensed phase and gas phase chemistry: Fragmentation of peptides containing oxidized cysteine residues and its implications for proteomics

  • Published:
Journal of the American Society for Mass Spectrometry

Abstract

Amino acid residues containing thioethers are easily oxidized during protein purification, derivatization, and/or digestion. For instance, oxidation of methionine residues in proteins during SDS-PAGE is commonly observed. Under low energy collision induced dissociation this gives rise to a second series of fragment ion of lower abundance that are shifted by −64 Da when compared to the oxidized methionine-containing fragments. We report here that alkylated cysteine residues can be found in their oxidized form too, indicating that the oxidation of thioethers can occur during and following protein digestion and not only during SDS-PAGE or reduction and alkylation. Collision induced dissociation experiments on the singly- and multiply-charged species reveals that these peptides preferentially undergo elimination reactions that forms a dehydroalanine from the oxidized, alkylated cysteine residue. This contrasts to the less abundant elimination reaction of peptides containing oxidized methionines which cannot form an α,β-unsaturated compound, but parallels the condensed phased chemistry of sulfoxides. The masses of both precursor and product ions are shifted such that these peptides cannot be identified in database searches with current algorithms. Incorporation of this fragmentation pattern is important for the isotope-coded affinity tag approach since this method is based on peptides containing cysteine residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pandey, A.; Mann, M. Nature 2000, 405, 837–846.

    Article  CAS  Google Scholar 

  2. Gygi, S.; Rist, B.; Gerber, S.; Turecek, F.; Gelb, M.; Aebersold, R. Nature Biotechnol. 1999, 19, 994–999.

    Article  CAS  Google Scholar 

  3. Fantes, K. H.; Furminger, I. G. Nature 1967, 216, 71–72.

    Article  CAS  Google Scholar 

  4. Patterson, S. D.; Aebersold, R. Electrophoresis 1995, 16, 1791–1814.

    Article  CAS  Google Scholar 

  5. Lagerwerf, F. M.; van de Weert, M.; Heerma, W.; Haverkamp, J. Rapid Commun. Mass Spectrom. 1996, 10, 1905–1910.

    Article  CAS  Google Scholar 

  6. Jiang, X.; Smith, J. B.; Abraham, E. C. J. Mass Spectrom. 1996, 31, 1309–1310.

    Article  CAS  Google Scholar 

  7. Turecek, F.; Drinkwater, D. E.; McLafferty, F. W. J. Am. Chem. Soc. 1989, 111, 7696–7701.

    Article  CAS  Google Scholar 

  8. Penn, R. E.; Block, E.; Revelle, L. K. J. Am. Chem. Soc. 1978, 100, 3622–3623.

    Article  CAS  Google Scholar 

  9. Wilm, M.; Mann, M. Anal. Chem. 1996, 68, 1–8.

    Article  CAS  Google Scholar 

  10. Shevchenko, A.; Chernuschevich, I.; Ens, W.; Standing, K. G.; Thomson, B.; Wilm, M.; Mann, M. Rapid Commun. Mass Spectrom. 1997, 11, 1015–1024.

    Article  CAS  Google Scholar 

  11. Krutchinsky, A. N.; Loboda, A. V.; Spicer, V. L.; Dworschak, R.; Ens, W.; Standing, K. G. Rapid Commun. Mass Spectrom. 1998, 12, 508–518.

    Article  CAS  Google Scholar 

  12. Gobom, J.; Nordhoff, E.; Mirgorodskaya, E.; Ekman, R.; Roepstorff, P. J. Mass Spectrom. 1999, 34, 105–116.

    Article  CAS  Google Scholar 

  13. Trost, B. M.; Salzmann, T. N.; Hiroi, K. J. Am. Soc. Chem. 1976, 98, 4887–4902.

    Article  CAS  Google Scholar 

  14. March, J. Advanced Organic Chemistry; 4th ed.; John Wiley & Sons, Inc.: New York, 1992.

    Google Scholar 

  15. Grabowsky, N. Justus Liebigs Ann. Chem. 1875, 175, 348–351.

    Article  Google Scholar 

  16. Kingsbury, C. A.; Cram, D. J. J. Am. Chem. Soc. 1960, 82, 1810–1819.

    Article  CAS  Google Scholar 

  17. Adams, J.; Gross, M. L. J. Am. Chem. Soc. 1989, 111, 435–440.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Mann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steen, H., Mann, M. Similarity between condensed phase and gas phase chemistry: Fragmentation of peptides containing oxidized cysteine residues and its implications for proteomics. J Am Soc Mass Spectrom 12, 228–232 (2001). https://doi.org/10.1016/S1044-0305(00)00219-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1044-0305(00)00219-1

Keywords

Navigation