Skip to main content
Log in

Optimum Fitting of Richards Growth Model in Random Environment

  • Original Article
  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

Richards four-parameter nonlinear growth model is a very versatile model for describing many growth processes. Two limitations of the corresponding Richards nonlinear statistical model are discussed. Accordingly, in this article, the general approach of ‘Stochastic differential equations’ is considered. Ghosh and Prajneshu (J Indian Soc Agric Stat 71:127–138, 2017) developed the methodology for fitting Richards growth model in random environment, when one of the parameters, viz. m takes a particular value. Purpose of the present article is to extend this type of work by proposing the methodology, which is valid for all values of m. Relevant computer programs for its application are written and the same are included as an “Appendix”. Finally, as an illustration, pig growth data are considered and superiority of our proposed model is shown over the Richards nonlinear statistical model for given data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cohen S, Elliott RJ (2015) Stochastic calculus and applications, 2nd edn. Birkhauser, Basel

    Book  Google Scholar 

  2. Das P (2015) Estimation of growth parameters using nonlinear mixed effect model and comparison with fixed effect model in animals. M.Sc. thesis, ICAR-Indian Agricultural Research Institute, New Delhi

  3. Dennis B, Ponciano JM (2014) Density dependent state space model for population abundance data with unequal time intervals. Ecology 95:2069–2076

    Article  Google Scholar 

  4. Filipe PA, Braumann CA, Brites NM, Roquete CJ (2013) Prediction for individual growth in a random environment. In: Oliveira PE, Temido MG, Henriques C, Vichi M (eds) Recent developments in modeling and applications in Statistics. Springer, Berlin, pp 193–201

    Chapter  Google Scholar 

  5. Ghosh H, Iquebal MA, Prajneshu (2011) Bootstrap study of parameter estimates for nonlinear Richards growth model through genetic algorithm. J Appl Stat 38:491–500

    Article  MathSciNet  Google Scholar 

  6. Ghosh H, Prajneshu (2017) Richards stochastic differential equation model and its application. J Indian Soc Agric Stat 71:127–138

    MathSciNet  Google Scholar 

  7. Jazwinski AH (2007) Stochastic processes and filtering theory. Dover Publications, New York

    MATH  Google Scholar 

  8. Liao H-Y, Ai B-Q, Hu L (2007) Effects of multiplicative colored noise in bacteria growth. Braz J Phys 37:1125–1128

    Article  Google Scholar 

  9. Lv J, Wang K, Jiao J (2015) Stability of stochastic Richards growth model. Appl Math Model 39:4821–4827

    Article  MathSciNet  Google Scholar 

  10. Matis JH, Mohammed KT, Al-Muhammed M (2011) Mitigating autocorrelation in Richards growth model analysis using incremental growth data with application to Turkey growth. J Indian Soc Agric Stat 65:69–76

    MathSciNet  Google Scholar 

  11. Roman-Roman P, Torres-Ruiz F (2015) A stochastic model related to the Richards-type growth curve. Estimation by means of simulated annealing and variable neighborhood search. Appl Math Comput 266:579–598

    MathSciNet  Google Scholar 

  12. Wang X, Wu J, Yang Y (2012) Richards model revisited: validation by and application to infection dynamics. J Theor Biol 313:12–19

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Science and Engineering Research Board, New Delhi for providing financial assistance under Research Project No. SB/S4/MS/880/2014. Thanks are also due to the referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prajneshu.

Appendix

Appendix

  1. (1)

    SAS Code for Estimation of Parameters

  • %macropigdata;

  • proc optmodel;

  • ods output PrintTable=parms_&kk.;

  • set l={1..n1}; /*n1= total number of ages in data*/

  • set j=2..n2; /*value for last age */

  • number y{l};

  • number yt{l};

  • read data abc_&kk. into [_n_] y;

  • read data abcd_&kk. into [_n_] yt;

  • number n init n1; /* In the following, z1 = r, z2 = α = Km, z3 = m and z4 = σ */

  • var z1>=0<=1;

  • var z2>=0<=MAXIMUM_CARRYING_CAPACITY;

  • var z3>=0<=1;

  • var z4>=0<=1;

  • max f=sum{i in j}((abs(z3)*(y[i])**((z3+1)/z3))*(1+((y[i]-(z2+(y[i-1]-z2)*exp(-z1)))/(exp(-z1*i)*(1+((y[i-1]-(z2+(y[1]-z2)*exp(-z1*(i-1))))/exp(-z1*(i-1)))))))**-1*((exp(z1*i)*( (1+((y[i-1]-(z2+(y[1]-z2)*exp(-z1*(i-1))))/exp(-z1*(i-1))))))**-1)*(1/sqrt(6.28*z4*z4)*exp(-0.5*z4*z4*(log(1+((y[i]-(z2+(y[i-1]-z2)*exp(-z1)))/(1+((y[i-1]-(z2+(y[1]-z2)*exp(-z1*(i-1))))/exp(-z1*(i-1)))))))**2)));

  • solve;

  • print f z1 z2 z3 z4;run;quit;

  • %mend;

  • %macro iml;

  • %let count=1;

  • %let pp=1;

  • %let qq=SIZE_OF_DATA; /* number of columns in data */

  • %loop:

  • proc iml;

  • x={DATA_FILE}; /*a matrix where each column corresponds to data of a particular pig*/

  • %do j=-10 %to 10 %by 1;

  • yy=x[,1:SIZE_OF_DATA];

  • vv=&j/10;

  • ty=yy##-vv;

  • kt=kt||ty;%end;

  • aa=kt[,&pp:&qq];

  • %let pp=%eval(&pp+SIZE_OF_DATA);

  • %let qq=%eval(&qq+SIZE_OF_DATA);

  • %do i=1 %to SIZE_OF_DATA;

  • y1=aa[,&i];

  • y_&i.=(y1);

  • varnames={y};

  • create abc_&i. from y_&i.[colname=varnames];

  • append from y_&i.;

  • close abc_&i.;%end;

  • %do i=1 %to SIZE_OF_DATA;

  • ym=yy[,&i];

  • yt_&i.=(ym);

  • varnames={yt};

  • create abcd_&i. from yt_&i.[colname=varnames];

  • append from yt_&i.;

  • close abcd_&i.;%end;

  • create x1 from x;

  • append from x;

  • close x1;

  • %let count=%eval(&count+1);

  • %do kk=1 %to SIZE_OF_DATA;

  • %pigdata;%end;

  • proc iml;

  • %do kk=1 %to SIZE_OF_DATA;

  • use abc_&kk.;

  • read all into y_&kk.;

  • use parms_&kk.;

  • read all into z_&kk.;

  • use x1;

  • read all into x;

  • zz=z_&kk.;

  • zz1=zz1//zz;

  • %end;print zz1;

  • %if &count<=NUMBER_OF_ITERATIONS; %then %do;

  • %goto loop;

  • %end;quit;

  • %mend;%iml;

  1. (2)

    Program for Fitting and Forecasting Purposes

  • proc iml; /*a matrix where each column corresponds to estimates of parameter of a particular pig */

  • z={ESTIMATES_OF_PARAMETERS};

  • y={DATA_FILE}; /*a matrix where each column corresponds to data of a particular pig*/

  • do j=1 to SIZE_OF_DATA; /* number of columns in data */

  • yyy=(y[,j])##(-1*z[3,j]);

  • sum1=0;fit=0;

  • do i=2 to LAST_AGE; /* last age to perform fitting */

  • fittedw=(z[2,j]+(yyy[i-1]-z[2,j])*exp(-z[1,j])+exp(-z[1,j]*i)*(1+((yyy[i-1]+(z[2,j]+(yyy[1]-z[2,j])*exp(-z[1,j]*(i-1))))/exp(-z[1,j]*(i-1))))*(exp(0.5*z[4,j]*z[4,j])-1))**(-1/z[3,j]);

  • /* fitting performed with time span of 1 and forecasting with time span of 4*/

  • fit=fit//fittedw;mm=y[i,j];

  • diff=(mm-fittedw)##2;

  • sum1=sum1+diff;end;

  • av=sum1/(NUMBER_OF_AGES);

  • av1=av1||av;

  • fitting=fitting||fit;

  • end;print fitting;

  • av2=av1##0.5;

  • print av2;quit;

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, H., Prajneshu Optimum Fitting of Richards Growth Model in Random Environment. J Stat Theory Pract 13, 6 (2019). https://doi.org/10.1007/s42519-018-0004-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s42519-018-0004-9

Keywords

Mathematics Subject Classification

Navigation