Skip to main content
Log in

Determination of the Efficacy of Eggshell as a Low-Cost Adsorbent for the Treatment of Metal Laden Effluents

  • Research paper
  • Published:
International Journal of Environmental Research Aims and scope Submit manuscript

Abstract

Excessive release of metals and metalloids into the environment is a major global environmental concern and there is need for environmentally friendly and cost-effective methods for their removal. The present study investigated the adsorptive removal of zinc, lead, copper, and nickel ions from synthetic aqueous solutions and various metals from three acid mine drainage (AMD) sites using chicken eggshells. Process parameters, including the initial metal concentration, were evaluated and the optimum conditions obtained were pH 7, adsorbent dose of 7 g, and contact time of 360 min (for the removal of 100 ppm metal ions). Under these conditions, the percentage adsorptions were 97% for lead, 95% for copper, 94% for nickel, and 80% for zinc. Aluminium, iron, potassium, nickel, and zinc ions all had percentage adsorptions above 75% in AMD sample 1. Potassium had a 98.78% adsorption, while magnesium, strontium, and zinc had 72.33, 68.75, and 53.07% adsorption, respectively, in sample 2. Arsenic, chromium, copper, iron, antimony, and tellurium ions were above 75% for sample 3. The study demonstrated the efficacy of chicken eggshells and presents it as a viable low-cost adsorbent for bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarwal A (2013) Removal of Cu and Pb from aqueous solution by using eggshell as an adsorbent. Int J Res Chem Environ 3:198–202

    CAS  Google Scholar 

  • Agarwal A, Gupta PK (2014) Removal of Cu and Fe from aqueous solution by using eggshell powder as low cost adsorbent. Adv Appl Sci Res 5(2):75–79

    CAS  Google Scholar 

  • Anantha RK, Kota S (2016) Removal of lead by adsorption with the renewable biopolymer composite of feather (Dromaius novaehollandiae) and chitosan (Agaricus bisporus). Environ Technol Innov 6:11–26

    Article  Google Scholar 

  • Arunlertaree C, Kaewsomboon W, Kumsopa A, Pokethitiyook P, Panyawathanakit P (2007) Removal of lead from battery manufacturing wastewater by egg shell. Songklanakarin J Sci Technol 29(3):857–868

    Google Scholar 

  • Bálintová M, Holub M, Singovszka E (2012) Study of iron, copper and zinc removal from acidic solutions by sorption. Chem Eng Trans 28:175–180

    Google Scholar 

  • Bhutiani R, Kulkarni DB, Khanna DR, Gautam A (2016) Water quality, pollution source apportionment and health risk assessment of heavy metals in groundwater of an industrial area in North India. Expo Health 8(1):3–18

    Article  CAS  Google Scholar 

  • Boota R, Bhatti HN, Hanif MA (2009) Removal of Cu (II) and Zn (II) using lignocellulosic fiber derived from Citrus reticulata (Kinnow) waste biomass. Sep Sci Technol 44(16):4000–4022

    Article  CAS  Google Scholar 

  • Briggs J (2005) Science in focus chemistry for secondary 5 normal (academic): theory workbook. Pearson Education South Asia, Singapore

    Google Scholar 

  • Browner RF, Boorn AW (1984) Sample introduction techniques for atomic spectroscopy. Anal Chem 56(7):875A–888A

    Article  CAS  Google Scholar 

  • Butler BA, Reisman DJ (2008) Preliminary results: release of metals from acid-mine drainage contaminated streambed sediments under anaerobic conditions. Proceedings America Society of Mining and Reclamation, pp 206–222

  • Carvalho J, Araujo J, Castro F (2011) Alternative low-cost adsorbent for water and wastewater decontamination derived from eggshell waste: an overview. Waste Biomass Valoriz 2(2):157–167

    Article  Google Scholar 

  • Chada VGR, Hausner DB, Strongin DR, Rouff AA, Reeder RJ (2005) Divalent Cd and Pb uptake on calcite cleavage faces: an XPS and AFM study. J Colloid Interface Sci 288(2):350–360

    Article  CAS  Google Scholar 

  • Chavan N, Daniels S, Rajdeo K, Tambe S, Mulani K (2013) Adsorption of chromium (VI) from aqueous solutions by coffee polyphenol-formaldehyde/acetaldehyde resins. J Polym 204(3):234–245

    Google Scholar 

  • Chen X, Lam KF, Mak SF, Yeung KL (2011) Precious metal recovery by selective adsorption using biosorbents. J Hazard Mater 186(1):902–910

    Article  CAS  Google Scholar 

  • Choi HJ, Lee SM (2015) Heavy metal removal from acid mine drainage by calcined eggshell and microalgae hybrid system. Environ Sci Pollut Res 22(17):13404–13411

    Article  CAS  Google Scholar 

  • Chojnacka K (2005) Biosorption of Cr(III) ions by eggshells. J Hazard Mater 121(1):167–173

    Article  CAS  Google Scholar 

  • Clesceri AE, Apha L, Greenberg AD (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Das D, Charumathi D, Das N (2010) Combined effects of sugarcane bagasse extract and synthetic dyes on the growth and bioaccumulation properties of Pichia fermentans MTCC 189. J Hazard Mater 183(1):497–505

    Article  CAS  Google Scholar 

  • Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2(5):112–118

    Google Scholar 

  • Eamsiri A, Arunlertaree C, Datchaneekul K (2005) Removal of heavy metals in synthetic wastewater by adsorption on bentonite. Environ Nat Res 3:21–30

    Google Scholar 

  • El Sayed GS, El Asmy AAH, El Nokrashy AM (2011) Batch removal of nickel by eggshell as a low cost sorbent. Int J Ind Chem 134:334–345

    Google Scholar 

  • Elmer P (2008) Atomic spectroscopy: a guide to selecting the appropriate technique and system. PerkinElmer Inc., Shelton

    Google Scholar 

  • Elzinga EJ, Reeder RJ (2002) X-ray absorption spectroscopy study of Cu2+ and Zn2+ adsorption complexes at the calcite surface: implications for site-specific metal incorporation preferences during calcite crystal growth. Geochim Cosmochim Acta 66(22):3943–3954

    Article  CAS  Google Scholar 

  • Förstner U, Wittmann GT (2012) Metal pollution in the aquatic environment. Springer Science and Business Media, Berlin

    Google Scholar 

  • Gupta VK, Ali I, Saleh TA, Nayak A, Agarwal S (2012) Chemical treatment technologies for waste-water recycling—an overview. Res Adv 2(16):6380–6388

    CAS  Google Scholar 

  • Hameed BH, Ahmad AL, Latiff KNA (2007) Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes Pigm 75(1):143–149

    Article  CAS  Google Scholar 

  • Harrison EZ, Bonhotal J (2005) Preventing animal nuisances in small scale composting. Cornell Waste Management Institute, Ithaca

    Google Scholar 

  • Ho JH, Yeh YN, Wang HW, Khoo SK, Chen YH, Chow CF (2014) Removal of Nickel and silver ions using eggshells with membrane, eggshell membrane, and eggshells. Food Sci Technol Res 20(2):337–343

    Article  CAS  Google Scholar 

  • http://www.perkinelmer.com/PDFs/Downloads/BRO_WorldLeaderAAICPMSICPMS.pdf. Accessed 16 September 2015

  • Huges MN, Poole RK (1991) Metal speciation and microbial growth-the hard (and soft) facts. J Gen Microbiol 137:725–734

    Article  Google Scholar 

  • Ipeaiyeda R, Tesi GO (2014) Sorption and desorption studies on toxic metals from brewery effluent using eggshell as adsorbent. Adv Nat Sci 7(2):15–24

    Google Scholar 

  • Ishikawa SI, Suyama K, Arihara K, Itoh M (2002) Uptake and recovery of gold ions from electroplating wastes using eggshell membrane. Biores Technol 81(3):201–206

    Article  CAS  Google Scholar 

  • Judd BR (2014) Operator techniques in atomic spectroscopy. Princeton University Press, Princeton

    Google Scholar 

  • Kadirvelu K, Namasivayam C (2003) Activated carbon from coconut coirpith as metal adsorbent: adsorption of Cd (II) from aqueous solution. Adv Environ Res 7(2):471–478

    Article  CAS  Google Scholar 

  • Kadirvelu K, Thamaraiselvi K, Namasivayam C (2001) Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Biores Technol 76(1):63–65

    Article  CAS  Google Scholar 

  • Kalyani DC, Telke AA, Dhanve RS, Jadhav JP (2009) Ecofriendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1. J Hazard Mater 163(2):735–742

    Article  CAS  Google Scholar 

  • Kanamadi RD, Ahalya N, Ramachandra TV (2006) Biosorption of iron (III) from aqueous solutions using the husk of Cicer arientinum. Indian J Chem Technol 13(2):122

    Google Scholar 

  • Kanyal M, Bhatt AA (2015) Removal of heavy metals from water (Cu and Pb) using household waste as an adsorbent. J Bioremed Biodegrad 74(1):63–68

    Google Scholar 

  • Khalili FI, Salameh NAH, Shaybe MM (2012) Sorption of uranium (VI) and thorium (IV) by Jordanian bentonite. J Chem 13:201–216

    Google Scholar 

  • Kobayashi H, Satoh K, Sawada K (2004) Adsorption of divalent heavy metal ions on calcium carbonate (calcite). Bunseki Kagaku 53(2):101–107

    Article  CAS  Google Scholar 

  • Kumaraswamy K, Dhananjaneyulu BV, Vijetha P, Kumar Y (2015) Kinetic and equilibrium studies for the removal of chromium using eggshell powder. Res J Pharm Biol Chem Sci 6(1):529–532

    CAS  Google Scholar 

  • Lee LH, Wu TY, Low ZX (2016) Reuse of powdered eggshells in vermicomposting of acidic waste. Monash University, Malasia

    Google Scholar 

  • Liu C (2014) Metal ions removal from polluted waters by sorption onto exhausted coffee waste. Application to metal finishing industries wastewater treatment. A doctorat thesis. Universitat de Girona

  • Lunge S, Thakre D, Kamble S, Labhsetwar N, Rayalu S (2012) Alumina supported carbon composite material with exceptionally high defluoridation property from eggshell waste. J Hazard Mater 237:161–169

    Article  Google Scholar 

  • Lurtwitayapont S, Srisatit T (2010) Comparison of lead removal by various types of swine bone adsorbents. Environ Asia 3(1):32–38

    Google Scholar 

  • Mahamadi C (2011) Water hyacinth as a biosorbent: a review. Afr J Environ Sci Technol 5(13):1137–1145

    CAS  Google Scholar 

  • Martin MH (2012) Biological monitoring of heavy metal pollution: land and air. Applied Science Publishing, Essex

    Google Scholar 

  • Momba MN, Sibewu M, Mandeya A (2009) Survival of somatic and F-RNA coliphages in treated wastewater effluents and their impact on viral quality of the receiving water bodies in the Eastern Cape Province, South Africa. J Biol Sci 9(7):648–654

    Article  CAS  Google Scholar 

  • Montaser A (1998) Inductively coupled plasma mass spectrometry. Wiley, New York

    Google Scholar 

  • Nagavallemma KP, Wani SP, Lacroix S, Padmaja VV, Vineela C, Babu Rao M, Sahrawat KL (2004) Vermicomposting: Recycling wastes into valuable organic fertilizer. Global Theme on Agrecosystems Report no. 8. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics

  • Ngah WW, Hanafiah MAKM (2008) Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Biores Technol 99(10):3935–3948

    Article  Google Scholar 

  • Oboh I, Aluyor E, Audu T (2009) Biosorption of heavy metal ions from aqueous solutions using a biomaterial. Leonardo J Sci 14:58–65

    Google Scholar 

  • Park HJ, Jeong SW, Yang JK, Kim BG, Lee SM (2007) Removal of heavy metals using waste eggshell. J Environ Sci 19(12):1436–1441

    Article  CAS  Google Scholar 

  • Paula H (2006) The use of hatchery residual biosorbent for removal of heavy metals from wastewater. Doctoral dissertation

  • Pellera FM, Giannis A, Kalderis D, Anastasiadou K, Stegmann R, Wang JY, Gidarakos E (2012) Adsorption of Cu (II) ions from aqueous solutions on biochars prepared from agricultural by-products. J Environ Manage 96(1):35–42

    Article  CAS  Google Scholar 

  • Pettinato M, Chakraborty S, Arafat HA, Calabro V (2015a) Eggshell: a green adsorbent for heavy metal removal in an MBR system. Ecotoxicol Environ Saf 121:57–62

    Article  CAS  Google Scholar 

  • Pettinato M, Mukherjee D, Andreoli S, Minardi ER, Calabro V, Curcio S, Chakraborty S (2015b) Industrial waste-an economical approach for adsorption of heavy metals from ground water. Am J Eng Appl Sci 8(1):48

    Article  Google Scholar 

  • Prasad MNV, Shih K (2016) Environmental materials and waste: resource recovery and pollution prevention. Academic Press, London

    Google Scholar 

  • Puranik PR, Paknikar KM (1999) Biosorption of lead, cadmium, and zinc by Citrobacter strain MCM B-181: characterization Studies. Biotechnol Prog 15(2):228–237

    Article  CAS  Google Scholar 

  • Putra WP, Kamari A, Yusoff SNM, Ishak CF, Mohamed A, Hashim N, Isa IM (2014) Biosorption of Cu (II), Pb(II) and Zn (II) ions from aqueous solutions using selected waste materials: adsorption and characterisation studies. J Encapsul Adsorption Sci 4(4):201–213

    Google Scholar 

  • Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177(1):70–80

    Article  CAS  Google Scholar 

  • Rajendran A, Mansiya C (2011) Extraction of chromium from tannery effluents using waste egg shell material as an adsorbent. Br J Environ Clim Change 1(2):44

    Google Scholar 

  • Rao LN, Prabhakar G (2011) Removal of heavy metals by biosorption-an overall review. J Eng Stud 2(4):17–22

    Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals. Wiley, California

    Google Scholar 

  • Reddad Z, Gérente C, Andrès Y, Ralet MC, Thibault JF, Le Cloirec P (2002) Ni (II) and Cu (II) binding properties of native and modified sugar beet pulp. Carbohyd Polym 49(1):23–31

    Article  CAS  Google Scholar 

  • Reddy KR, Cameselle C (2009) Overview of electrochemical remediation technologies. Electrochemical Remediation Technologies for Polluted Soils, Sediments and Groundwater, Wiley, New Jersey

    Book  Google Scholar 

  • Rohaizar NAB, Hadi NBA, Sien WC (2013) Removal of Cu (II) from water by adsorption on chicken eggshell. Environ Pollut 117(2):50–57

    Google Scholar 

  • Rouff AA, Elzinga EJ, Reeder RJ, Fisher NS (2004) X-ray absorption spectroscopic evidence for the formation of Pb(II) inner-sphere adsorption complexes and precipitates at the calcite-water interface. Environ Sci Technol 38(6):1700–1707

    Article  CAS  Google Scholar 

  • Sandrin TR, Hoffman DR (2007) Bioremediation of organic and metal co-contaminated environments: effects of metal toxicity, speciation, and bioavailability on biodegradation. In: Singh S, Tripathi R (eds) Environmental Bioremediation Technologies. Springer, Berlin Heidelberg, pp 1–34

    Chapter  Google Scholar 

  • Schiewer S, Volesky B (1997) Biosorption of heavy metals by low cost adsorbents, Technical Report No. 112

  • Schiewer S, Fourest E, Chong KH, Volesky B (1995) Ion exchange in metal biosorption by dried seaweed: experiments and model predictions. In: biohydrometallurgical processing: proceedings of the international biohydrometallurgy Symposium 219–228

  • Schwarz JA, Contescu CI (1999) Surfaces of nanoparticles and porous materials, vol 78. CRC Press, New York

    Book  Google Scholar 

  • Sedlak DL, Phinney JT, Bedsworth WW (1997) Strongly complexed Cu and Ni in wastewater effluents and surface runoff. Environ Sci Technol 31(10):3010–3016

    Article  CAS  Google Scholar 

  • Shahwan T, Zünbül B, Tunusoğlu O, Eroğlu AE (2005) AAS, XRPD, SEM/EDS, and FTIR characterization of Zn 2+ retention by calcite, calcite–kaolinite, and calcite–clinoptilolite minerals. J Colloid Interface Sci 286(2):471–478

    Article  CAS  Google Scholar 

  • Sharifuzzaman SM, Rahman H, Ashekuzzaman SM, Islam MM, Chowdhury SR, Hossain MS (2016) Heavy metals accumulation in coastal sediments. In: environmental remediation technologies for metal-contaminated soils. Springer, Japan, pp 21–42

  • Stipp SL, Hochella MF, Parks GA, Leckie JO (1992) Cd2+ uptake by calcite, solid-state diffusion, and the formation of solid-solution: interface processes observed with near-surface sensitive techniques (XPS, LEED, and AES). Geochim Cosmochim Acta 56(5):1941–1954

    Article  CAS  Google Scholar 

  • Tabatabaee A, Dastgoshadeh F, Tabatabaee A (2016) Biosorption of heavy metals by low cost adsorbents. World Acad Sci Eng Technol Int J Environ Chem Ecol Geol Geophys Eng 8(9):699–704

    Google Scholar 

  • Twiss MR, Errecalde O, Fortin C, Campbell PGC, Jumarie C, Denizeau F, Berkelaar E, Hale B, Van Rees K (2001) Coupling the use of computer chemical speciation models and culture techniques in laboratory investigations of trace metal toxicity. Chem Speciat Bioavailab 13:9–24

    Article  CAS  Google Scholar 

  • Volesky B (1990) Biosorption of heavy metals. CRC Press, Florida

    Google Scholar 

  • Volesky B, Naja G (2007) Biosorption technology: starting up an enterprise. Int J Technol Transfer Commercialisation 6(2–4):196–211

    Article  Google Scholar 

  • Wang L, Chen Z, Yang J, Ma F (2013) Pb(II) Biosorption by compound bioflocculant: performance and mechanism. Desalin Water Treat 53(2):421–429

    Article  Google Scholar 

  • Williams CJ, Aderhold D, Edyvean RGJ (1998) Comparison between biosorbents for the removal of metal ions from aqueous solutions. Water Res 32(1):216–224

    Article  CAS  Google Scholar 

  • Yao S, Li J, Shi Z (2010) Immobilization of TiO2 nanoparticles on activated carbon fiber and its photodegradation performance for organic pollutants. Particuology 8(3):272–278

    Article  CAS  Google Scholar 

  • Zachara JM, Cowan CE, Resch CT (1991) Sorption of divalent metals on calcite. Geochim Cosmochim Acta 55(6):1549–1562

    Article  CAS  Google Scholar 

  • Zamboulis D, Peleka EN, Lazaridis NK, Matis KA (2011) Metal ion separation and recovery from environmental sources using various flotation and sorption techniques. J Chem Technol Biotechnol 86(3):335–344

    Article  CAS  Google Scholar 

  • Zulfikar MA, Setiyanto H (2013) Adsorption of Congo red from aqueous solution using powdered eggshell. Adsorption 5(4):1532–1540

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the University of South Africa (National Student Financial Aid Scheme) for student funding and Department of Environmental Sciences for financial support and provision of resources and research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence D. Mashangwa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashangwa, T.D., Tekere, M. & Sibanda, T. Determination of the Efficacy of Eggshell as a Low-Cost Adsorbent for the Treatment of Metal Laden Effluents. Int J Environ Res 11, 175–188 (2017). https://doi.org/10.1007/s41742-017-0017-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41742-017-0017-3

Keywords

Navigation