Skip to main content
Log in

Biasing transition rate method based on direct MC simulation for probabilistic safety assessment

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Direct Monte Carlo (MC) simulation is a powerful probabilistic safety assessment method for accounting dynamics of the system. But it is not efficient at simulating rare events. A biasing transition rate method based on direct MC simulation is proposed to solve the problem in this paper. This method biases transition rates of the components by adding virtual components to them in series to increase the occurrence probability of the rare event, hence the decrease in the variance of MC estimator. Several cases are used to benchmark this method. The results show that the method is effective at modeling system failure and is more efficient at collecting evidence of rare events than the direct MC simulation. The performance is greatly improved by the biasing transition rate method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. IAEA, Applications of probabilistic safety assessment (PSA) for nuclear power plants. IAEA-TECDOC-1200. 1-96 (2001)

  2. F. Di Maio, M. Vagnoli, E. Zio, Transient identification by clustering based on integrated deterministic and probabilistic safety analysis outcomes. Ann. Nucl. Energy 87, 217–227 (2016). doi:10.1016/j.anucene.2015.09.007

    Article  Google Scholar 

  3. Y.C. Wu, Development of reliability and probabilistic safety assessment program RiskA. Ann. Nucl. Energy 83, 316–321 (2015). doi:10.1016/j.anucene.2015.03.020

    Article  Google Scholar 

  4. Y.C. Wu, P. Liu, L.Q. Hu et al., Development of an integrated probabilistic safety assessment program (in Chinese). Chin. J. Nucl. Sci. Eng. 27, 270–276 (2007)

    Google Scholar 

  5. E. Zio, The Monte Carlo simulation method for system reliability and risk analysis (Springer, Berlin, 2013)

    Book  Google Scholar 

  6. L.Q. Hu, Y.C. Wu, Probabilistic safety assessment of the dual-cooled waste transmutation blanket for the FDS-I. Fusion Eng. Des. 81, 1403–1407 (2006). doi:10.1016/j.fusengdes.2005.08.091

    Article  Google Scholar 

  7. Y.C. Wu, Y.Q. Bai, Y. Song et al., Development strategy and conceptual design of China Lead-based Research Reactor. Ann. Nucl. Energy 87, 511–516 (2016). doi:10.1016/j.anucene.2015.08.015

    Article  Google Scholar 

  8. Y.C. Wu, J.Q. Jiang, M.H. Wang et al., A fusion-driven subcritical system concept based on viable technologies. Nucl. Fusion 51, 1–7 (2011). doi:10.1088/0029-5515/51/10/103036

    Article  Google Scholar 

  9. Y.C. Wu, Conceptual design and testing strategy of a dual functional lithium–lead test blanket module in ITER and EAST. Nucl. Fusion 47, 1533–1539 (2007). doi:10.1088/0029-5515/47/11/015

    Article  Google Scholar 

  10. A.J. Buslik, Monte Carlo methods for the reliability analysis of Markov systems nuclear safety, in Proceedings: of EPRI NP-3912-SR, San Francisco, USA (1985)

  11. G. Bucciarelli, D. Franciotti, M. Marseguerra et al., Monte Carlo reliability analysis of a safety plant of the Italian Gran Sasso high energy physics national laboratory by means of the MARA code, in Proceedings of ESREL2003, Maastricht, Netherlands (2003)

  12. Y.C. Wu, J. Song, H.Q. Zheng et al., CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC. Ann. Nucl. Energy 2, 161–168 (2014). doi:10.1016/j.anucene.2014.08.058

    Google Scholar 

  13. M. Marseguerra, E. Zio, F. Cadini, Biased Monte Carlo unavailability analysis for systems with time-dependent failure rates. Reliab. Eng. Syst. Saf. 76, 11–17 (2002). doi:10.1016/S0951-8320(01)00139-9

    Article  Google Scholar 

  14. R.Y. Rubinstein, G. Samorodnitsky, Variance reduction by the use of common and antithetic random variables. J. Stat. Comput. Simul. 22, 161–180 (1985). doi:10.1080/00949658508810841

    Article  MATH  Google Scholar 

  15. H. Kumamoto, K. Tanaka, K. Inoue et al., Dagger-sampling Monte Carlo for system unavailability evaluation. IEEE Trans. Reliab. 29, 122–125 (1980). doi:10.1109/TR.1980.5220749

    Article  Google Scholar 

  16. G.W. Imbens, T. Lancaster, Efficient estimation and stratified sampling. J. Econ. 74, 289–318 (1996). doi:10.1016/0304-4076(95)01756-9

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. Choe, E. Byon, N. Chen, Importance sampling for reliability evaluation with stochastic simulation models. Technometrics 57, 351–361 (2015). doi:10.1080/00401706.2014.1001523

    Article  MathSciNet  Google Scholar 

  18. L. Campioni, P. Vestrucci, Monte Carlo importance sampling optimization for system reliability applications. Ann. Nucl. Energy 31, 1005–1025 (2004). doi:10.1016/j.anucene.2004.01.004

    Article  Google Scholar 

  19. L. Campioni, R. Scardovelli, P. Vestrucci, Biased Monte Carlo optimization: the basic approach. Reliab. Eng. Syst. Saf. 87, 387–394 (2005). doi:10.1016/j.ress.2004.06.008

    Article  Google Scholar 

  20. L. Campioni, P. Vestrucci, Monte Carlo importance sampling optimization for system reliability applications. Ann. Nucl. Energy 31, 1005–1025 (2004). doi:10.1016/j.anucene.2004.01.004

    Article  Google Scholar 

  21. A.O. Lima, C.R. Menyuk, I.T. Lima, Comparison of two biasing Monte Carlo methods for calculating outage probabilities in systems with multisection PMD compensators. IEEE Photonics Technol. Lett. 17, 2580–2582 (2005). doi:10.1109/LPT.2005.859183

    Article  Google Scholar 

  22. C.R. Menyuk, Statistical errors in biasing Monte Carlo simulations with applications to polarization-mode dispersion compensators. J. Lightwave Technol. 24, 4184–4196 (2006). doi:10.1109/JLT.2006.883131

    Article  Google Scholar 

  23. E. Zio, Biasing the transition probabilities in direct Monte Carlo. Reliab. Eng. Syst. Saf. 47, 59–63 (1995). doi:10.1016/0951-8320(94)00035-M

    Article  Google Scholar 

Download references

Acknowledgement

We thank other members of the FDS Team for their help in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Wang.

Additional information

This work was supported by the Special Projects of International Thermonuclear Experimental Reactor (2015GB116000), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA03040000), the Informatizational Special Projects of Chinese Academy of Sciences (No. XXH12504-1-09), the Major/Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology (No. 2014FXCX004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, XL., Wang, JQ., Yuan, R. et al. Biasing transition rate method based on direct MC simulation for probabilistic safety assessment. NUCL SCI TECH 28, 91 (2017). https://doi.org/10.1007/s41365-017-0255-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0255-2

Keywords

Navigation