Skip to main content
Log in

DEM–CFD simulation of modular PB-FHR core with two-grid method

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

For designing and optimizing the reactor core of modular pebble-bed fluoride salt-cooled high-temperature reactor (PB-FHR), it is of importance to simulate the coupled fluid and particle flow due to strong coolant–pebble interactions. Computational fluid dynamics and discrete element method (DEM) coupling approach can be used to track particles individually while it requires a fluid cell being greater than the pebble diameter. However, the large size of pebbles makes the fluid grid too coarse to capture the complicated flow pattern. To solve this problem, a two-grid approach is proposed to calculate interphase momentum transfer between pebbles and coolant without the constraint on the shape and size of fluid meshes. The solid velocity, fluid velocity, fluid pressure and void fraction are mapped between hexahedral coarse particle grid and fine fluid grid. Then the total interphase force can be calculated independently to speed up computation. To evaluate suitability of this two-grid approach, the pressure drop and minimum fluidization velocity of a fluidized bed were predicted, and movements of the pebbles in complex flow field were studied experimentally and numerically. The spouting fluid through a central inlet pipe of a scaled visible PB-FHR core facility was set up to provide the complex flow field. Water was chosen as liquid to simulate the molten salt coolant, and polypropylene balls were used to simulate the pebble fuels. Results show that the pebble flow pattern captured from experiment agrees well with the simulation from two-grid approach, hence the applicability of the two-grid approach for the later PB-FHR core design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C.W. Forsberg, P.F. Peterson, P.S. Pickard et al., Molten-salt-cooled advanced high-temperature react or for production of hydrogen and electricity. Nucl. Technol. 144(3), 289–302 (2003). doi:10.13182/nt03-1

    Google Scholar 

  2. J. Serp, M. Allibert, O. Beneš et al., The molten salt reactor (MSR) in generation IV: overview and perspectives. Prog. Nucl. Energy 77, 308–319 (2014). doi:10.1016/j.pnucene.2014.02.014

    Article  Google Scholar 

  3. R.O. Scarlat, M.R. Laufer, E.D. Blandford et al., Design and licensing strategies for the fluoride-salt-cooled, high-temperature reactor (FHR) technology. Prog. Nucl. Energy 77, 406–420 (2014). doi:10.1016/j.pnucene.2014.07.002

    Article  Google Scholar 

  4. Z.J. Yang, J.L. Gou, J.Q. Shan et al., Analysis of SBLOCA on CPR1000 with a passive system. Nucl. Sci. Tech. (2016). doi:10.1007/s41365-016-0154-y

    Google Scholar 

  5. S. Bu, J. Yang, M. Zhou et al., On contact point modifications for forced convective heat transfer analysis in a structured packed bed of spheres. Nucl. Eng. Des. 270, 21–33 (2014). doi:10.1016/j.nucengdes.2014.01.001

    Article  Google Scholar 

  6. H. Zhang, Y. Tan, S. Shu et al., Numerical investigation on the role of discrete element method in combined LBM–IBM–DEM modeling. Comput. Fluids 94, 37–48 (2014). doi:10.1016/j.compfluid.2014.01.032

    Article  MathSciNet  Google Scholar 

  7. H. Zhang, A. Yu, W. Zhong et al., A combined TLBM–IBM–DEM scheme for simulating isothermal particulate flow in fluid. Int. J. Heat Mass Transf. 91, 178–189 (2015). doi:10.1016/j.ijheatmasstransfer.2015.07.119

    Article  Google Scholar 

  8. H. Kruggel-Emden, B. Kravets, M. Suryanarayana et al., Direct numerical simulation of coupled fluid flow and heat transfer for single particles and particle packings by a LBM-approach. Powder Technol. (2016). doi:10.1016/j.powtec.2016.02.038

    Google Scholar 

  9. Z. Xia, Y. Fan, T. Wang et al., A TFM-KTGF jetting fluidized bed coal gasification model and its validations with data of a bench-scale gasifier. Chem. Eng. Sci. 131, 12–21 (2015). doi:10.1016/j.ces.2015.03.017

    Article  Google Scholar 

  10. L. Yu, J. Lu, X. Zhang et al., Numerical simulation of the bubbling fluidized bed coal gasification by the kinetic theory of granular flow (KTGF). Fuel 86(5), 722–734 (2007). doi:10.1016/j.fuel.2006.09.008

    Article  Google Scholar 

  11. H. Zhu, Z. Zhou, R. Yang et al., Discrete particle simulation of particulate systems: theoretical developments. Chem. Eng. Sci. 62(13), 3378–3396 (2007). doi:10.1016/j.ces.2006.12.089

    Article  Google Scholar 

  12. J. Vujić, R.M. Bergmann, R. Škoda et al., Small modular reactors: simpler, safer, cheaper? Energy. 45(1), 288–295 (2012). doi:10.1016/j.energy.2012.01.078

    Article  Google Scholar 

  13. Y. Li, W. Ji, Effects of fluid–pebble interactions on mechanics in large-scale pebble-bed reactor cores. Int. J. Multiphas. Flow. 73, 118–129 (2015). doi:10.1016/j.ijmultiphaseflow.2015.03.004

    Article  MathSciNet  Google Scholar 

  14. S. Deb, D.K. Tafti, A novel two-grid formulation for fluid–particle systems using the discrete element method. Powder Technol. 246, 601–616 (2013). doi:10.1016/j.powtec.2013.06.014

    Article  Google Scholar 

  15. F. Alobaid, J. Ströhle, B. Epple et al., Extended CFD/DEM model for the simulation of circulating fluidized bed. Adv. Powder Technol. 24(1), 403–415 (2013). doi:10.1016/j.apt.2012.09.003

    Article  Google Scholar 

  16. F. Alobaid, A particle–grid method for Euler-Lagrange approach. Powder Technol. 286, 342–360 (2015). doi:10.1016/j.powtec.2015.08.019

    Article  Google Scholar 

  17. S. Rickelt, F. Sudbrock, S. Wirtz et al., Coupled DEM/CFD simulation of heat transfer in a generic grate system agitated by bars. Powder Technol. 249, 360–372 (2013). doi:10.1016/j.powtec.2013.08.043

    Article  Google Scholar 

  18. C. Goniva, C. Kloss, A. Hager et al., An open source CFD-DEM perspective. Proceedings of Open FOAM Workshop(2010)

  19. P.A. Cundall, O.D. Strack, A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979). doi:10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  20. J. Su, Z. Gu, C. Chen et al., A two-layer mesh method for discrete element simulation of gas-particle systems with arbitrarily polyhedral mesh. Int. J. Numer. Methods Eng. 103(10), 759–780 (2015). doi:10.1002/nme.4911

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Fabri, S. Pion,CGAL: The computational geometry algorithms library. In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM (2009). doi: 10.1145/1653771.1653865

  22. Z. Peng, E. Doroodchi, C. Luo et al., Influence of void fraction calculation on fidelity of CFD-DEM simulation of gas-solid bubbling fluidized beds. AIChE J. 60(6), 2000–2018 (2014). doi:10.1002/aic.14421

    Article  Google Scholar 

  23. S. Ergun, Fluid flow through packed columns. J. Ind. Eng. Chem. 41, 1179–1184 (1949). doi:10.1021/ie50474a011

    Article  Google Scholar 

  24. A. Griveau, Modeling and Transient Analysis for the Pebble Bed Advanced High Temperature Reactor ~ PB-AHTR,Master. Thesis, University of California, Berkeley (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na-Xiu Wang.

Additional information

This work was supported by the “Strategic Priority Research Program” of the Chinese Academy of Sciences (No. XD02001002)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, FR., Chen, XW., Li, Z. et al. DEM–CFD simulation of modular PB-FHR core with two-grid method. NUCL SCI TECH 28, 100 (2017). https://doi.org/10.1007/s41365-017-0246-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0246-3

Keywords

Navigation