Skip to main content
Log in

Th(IV) and U(VI) removal by TODGA in ionic liquids: extraction behavior and mechanism, and radiation effect

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Extraction behavior of thorium(IV) and uranium(VI) from nitric acid (HNO3) was studied using N,N,N′,N′-tetraoctyldiglycolamide (TODGA) as extractant in different ionic liquids, and isooctane as comparison. Slope analyses with varying HNO3 concentrations and diluents revealed the extraction mechanism. With increasing length of alkyl chain and HNO3 concentration, the extraction mechanism of TODGA/IL system changed from cation exchange to neutral complex and/or anion exchange, and the molar ratio between TODGA and metal ions varied gradually from 2:1 to 1:1 for Th(IV) and 3:1 to 1:1 for U(VI). The kinetics and thermodynamic studies of Th(IV) and U(VI) by the best TODGA/[C2mim][NTf2] system showed that the extraction equilibrium was reached within 2 h and extraction reactions were endothermic. Compared to TODGA/isooctane system, TODGA/[C2mim][NTf2] system presented higher radiation stability under γ-irradiation. Therefore, it would have a promising application in spent fuel reprocessing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.H. Ha, R.N. Menchavez, Y.M. Koo, Reprocessing of spent nuclear waste using ionic liquids. Korean J. Chem. Eng. 27, 1360–1365 (2010). doi:10.1007/s11814-010-0386-1

    Article  Google Scholar 

  2. E. Merle-Lucotte, D. Heuer, M. Allibert et al., Introduction to the physics of molten salt reactors, in Materials Issues for Generation IV Systems. NATO Science for Peace and Security Series B: Physics and Biophysics, ed. by V. Ghetta, D. Gorse, D. Mazière et al. (Springer, Dordrecht, 2008), pp. 501–521. doi:10.1007/978-1-4020-8422-5_25

  3. A.M. Dodson, R.A. McCann, Investigation of thermal feedback design for improved load-following capability of thorium molten salt reactors, in: Green Technologies Conference, 2013, IEEE (IEEE, 2013), pp. 215–219. doi:10.1109/GreenTech.2013.40

  4. M.R. Yaftian, L. Hassanzadeh, M.E. Eshraghi et al., Solvent extraction of thorium (IV) and europium (III) ions by diphenyl-N,N-dimethylcarbamoylmethylphosphine oxide from aqueous nitrate media. Sep. Purif. Technol. 31, 261–268 (2003). doi:10.1016/S1383-5866(02)00203-4

    Article  Google Scholar 

  5. S. Panja, P.K. Mohapatra, S.C. Tripathi et al., A highly efficient solvent system containing TODGA in room temperature ionic liquids for actinide extraction. Sep. Purif. Technol. 96, 289–295 (2012). doi:10.1016/j.seppur.2012.06.015

    Article  Google Scholar 

  6. H.Y. Zhou, Y.Y. Ao, J. Yuan et al., Extraction mechanism and gamma-radiation effect on the removal of Eu3+ by a novel BTPhen/[C(n)mim][NTf2] system in the presence of nitric acid. RSC Adv. 4, 45612–45618 (2014). doi:10.1039/C4RA07662A

    Article  Google Scholar 

  7. A. Sengupta, P.K. Mohapatra, M. Iqbal et al., A highly efficient solvent system containing functionalized diglycolamides and an ionic liquid for americium recovery from radioactive wastes. Dalton Trans. 41, 6970–6979 (2012). doi:10.1039/C2DT12364A

    Article  Google Scholar 

  8. T.J. Bell, Y. Ikeda, The application of novel hydrophobic ionic liquids to the extraction of uranium(VI) from nitric acid medium and a determination of the uranyl complexes formed. Dalton Trans. 40, 10125–10130 (2011). doi:10.1039/c1dt10755k

    Article  Google Scholar 

  9. S.A. Ansari, P.N. Pathak, V.K. Manchanda et al., N,N,N′,N′-Tetraoctyl diglycolamide (TODGA): a promising extractant for actinide-partitioning from high-level waste (HLW). Solvent Extr. Ion Exch. 23, 463–479 (2005). doi:10.1081/Sei-200066296

    Article  Google Scholar 

  10. S.A. Ansari, D.R. Prabhu, R.B. Gujar et al., Counter-current extraction of uranium and lanthanides from simulated high-level waste using N,N,N′,N′-tetraoctyl diglycolamide. Sep. Purif. Technol. 66, 116–117 (2009). doi:10.1016/j.seppur.2008.11.019

    Article  Google Scholar 

  11. J. Ravi, B.R. Selvan, K.A. Venkatesan et al., Evaluation of radiation stability of N,N-didodecyl N′,N′-di-octyl diglycolamide: a promising reagent for actinide partitioning. J. Radioanal. Nucl. Chem. 299, 879–885 (2014). doi:10.1007/s10967-013-2776-4

    Article  Google Scholar 

  12. H. Galan, A. Nunez, A.G. Espartero et al., Radiolytic stability of TODGA: characterization of degraded samples under different experimental conditions. Procedia Chem. 7, 195–201 (2012). doi:10.1016/j.proche.2012.10.033

    Article  Google Scholar 

  13. S. Nave, G. Modolo, C. Madic et al., Aggregation properties of N,N,N′,N′-tetraoctyl-3-oxapentanediamide (TODGA) in n-dodecane. Solvent Extr. Ion Exch. 22, 527–551 (2004). doi:10.1081/Sei-120039721

    Article  Google Scholar 

  14. K. Shimojo, K. Kurahashi, H. Naganawa, Extraction behavior of lanthanides using a diglycolamide derivative TODGA in ionic liquids. Dalton Trans. (2008). doi:10.1039/b810277p

    Google Scholar 

  15. Y.L. Shen, S.F. Wang, L. Zhu et al., Extraction of Th(IV) from an HNO3 solution by diglycolamide in ionic liquids. Ind. Eng. Chem. Res. 50, 13990–13996 (2011). doi:10.1021/ie102512m

    Article  Google Scholar 

  16. P.R.V. Rao, K.A. Venkatesan, A. Rout et al., Potential applications of room temperature ionic liquids for fission products and actinide separation. Sep. Sci. Technol. 47, 204–222 (2012). doi:10.1080/01496395.2011.628733

    Article  Google Scholar 

  17. T. Mori, K. Takao, K. Sasaki et al., Homogeneous liquid-liquid extraction of U(VI) from HNO3 aqueous solution to betainium bis(trifluoromethylsulfonyl)imide ionic liquid and recovery of extracted U(VI). Sep. Purif. Technol. 155, 133–138 (2015). doi:10.1016/j.seppur.2015.01.045

    Article  Google Scholar 

  18. S. Dai, Y.H. Ju, C.E. Barnes, Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids. J. Chem. Soc. Dalton (1999). doi:10.1039/A809672d

    Google Scholar 

  19. H.M. Luo, S. Dai, P.V. Bonnesen et al., Extraction of cesium ions from aqueous solutions using calix[4]arene-bis(tert-octylbenzo-crown-6) in ionic liquids. Anal. Chem. 76, 3078–3083 (2004). doi:10.1021/Ac049949k

    Article  Google Scholar 

  20. P. Giridhar, K.A. Venkatesan, T.G. Srinivasan et al., Extraction of uranium(VI) from nitric acid medium by 1.1 M tri-n-butylphosphate in ionic liquid diluent. J. Radioanal. Nucl. Chem. 265, 31–38 (2005). doi:10.1007/s10967-005-0785-7

    Article  Google Scholar 

  21. K. Nakashima, F. Kubota, T. Maruyama et al., Ionic liquids as a novel solvent for lanthanide extraction. Anal. Sci. 19, 1097–1098 (2003). doi:10.2116/analsci.19.1097

    Article  Google Scholar 

  22. M.L. Dietz, D.C. Stepinski, Anion concentration-dependent partitioning mechanism in the extraction of uranium into room-temperature ionic liquids. Talanta 75, 598–603 (2008). doi:10.1016/j.talanta.2007.11.051

    Article  Google Scholar 

  23. Y.L. Shen, X.W. Tan, L. Wang et al., Extraction of the uranyl ion from the aqueous phase into an ionic liquid by diglycolamide. Sep. Purif. Technol. 78, 298–302 (2011). doi:10.1016/j.seppur.2011.01.042

    Article  Google Scholar 

  24. Y.W. Zhang, Z.Y. Liu, F.Y. Fan et al., Extraction of uranium and thorium from nitric acid solution by TODGA in ionic liquids. Sep. Sci. Technol. 49, 1895–1902 (2014). doi:10.1080/01496395.2014.903279

    Article  Google Scholar 

  25. J. Fu, Q.D. Chen, T.X. Sun et al., Extraction of Th(IV) from aqueous solution by room-temperature ionic liquids and coupled with supercritical carbon dioxide stripping. Sep. Purif. Technol. 119, 66–71 (2013). doi:10.1016/j.seppur.2013.09.004

    Article  Google Scholar 

  26. D. Jiang, L. Liu, N. Pan et al., The separation of Th(IV)/U(VI) via selective complexation with graphene oxide. Chem. Eng. J. 271, 147–154 (2015). doi:10.1016/j.cej.2015.02.066

    Article  Google Scholar 

  27. T.X. Sun, X.H. Shen, Q.D. Chen et al., Identification of F and SO4 2− as the radiolytic products of the ionic liquid C(4)mimNTf(2) and their effect on the extraction of UO2 2+. Radiat. Phys. Chem. 83, 74–78 (2013). doi:10.1016/j.radphyschem.2012.10.004

    Article  Google Scholar 

  28. W.J. Yuan, Y.Y. Ao, L. Zhao et al., gamma-ray induced radiolysis of [C(2)mim][NTf2] and its effects on Dy3+ extraction. Nucl. Sci. Tech. 26, 92–96 (2015)

    Google Scholar 

  29. V.A. Cocalia, M.P. Jensen, J.D. Holbrey et al., Identical extraction behavior and coordination of trivalent or hexavalent f-element cations using ionic liquid and molecular solvents. Dalton Trans. (2005). doi:10.1039/B502016F

    Google Scholar 

  30. I. Billard, A. Ouadi, C. Gaillard, Is a universal model to describe liquid-liquid extraction of cations by use of ionic liquids in reach? Dalton Trans. 42, 6203–6212 (2013). doi:10.1039/C3dt32159b

    Article  Google Scholar 

  31. Y. Sugo, Y. Izumi, Y. Yoshida et al., Influence of diluent on radiolysis of amides in organic solution. Radiat. Phys. Chem. 76, 794–800 (2007). doi:10.1016/j.radphyschem.2006.05.008

    Article  Google Scholar 

  32. D. Allen, G. Baston, A.E. Bradley et al., An investigation of the radiochemical stability of ionic liquids. Green Chem. 4, 152–158 (2002). doi:10.1039/B111042J

    Article  Google Scholar 

  33. L.Y. Yuan, J. Peng, L. Xu et al., Radiation effects on hydrophobic ionic liquid [C(4)mim][NTf2] during extraction of strontium ions. J. Phys. Chem. B 113, 8948–8952 (2009). doi:10.1021/jp9016079

    Article  Google Scholar 

  34. W.J. Yuan, Y.Y. Ao, L. Zhao et al., Influence of radiation effect on extractability of an isobutyl-BTP/ionic liquid system: quantitative analysis and identification of radiolytic products. RSC Adv. 4, 51330–51333 (2014). doi:10.1039/C4RA08308C

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Zhao.

Additional information

This work is financially supported by the National Natural Science Foundation of China (No. 11475112), the Ph.D. Programs Foundation of Ministry of Education of China (No. 20130073120051) and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Yuan, WJ., Liu, C. et al. Th(IV) and U(VI) removal by TODGA in ionic liquids: extraction behavior and mechanism, and radiation effect. NUCL SCI TECH 28, 62 (2017). https://doi.org/10.1007/s41365-017-0214-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0214-y

Keywords

Navigation