Skip to main content
Log in

Development of a compact DOI–TOF detector module for high-performance PET systems

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

To increase spatial resolution and signal-to-noise ratio in PET imaging, we present in this paper the design and performance evaluation of a PET detector module combining both depth-of-interaction (DOI) and time-of-flight (TOF) capabilities. The detector module consists of a staggered dual-layer LYSO block with 2 mm × 2 mm × 7 mm crystals. MR-compatible SiPM sensors (MicroFJ-30035-TSV, SensL) are assembled into an 8 × 8 array. SiPM signals from both fast and slow outputs are read out by a 128-channel ASIC chip. To test its performance, a flood histogram is acquired with a 22Na point source on top of the detector, and the energy resolution and the coincidence resolving time (CRT) value for each individual crystal are measured. The flood histogram shows excellent crystal separation in both layers. The average energy resolution at 511 keV is 14.0 and 12.7% at the bottom and top layers, respectively. The average CRT of a single crystal is 635 and 565 ps at the bottom and top layers, respectively. In conclusion, the compact DOI–TOF PET detector module is of excellent crystal identification capability, good energy resolution and reasonable time resolution and has promising application prospective in clinical TOF PET, PET/MRI, and brain PET systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Delso, S. Fürst, B. Jakoby et al., Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J. Nucl. Med. 52, 1914–1922 (2011). doi:10.2967/jnumed.111.092726

    Article  Google Scholar 

  2. E. Roncali, S.R. Cherry, Application of silicon photomultipliers to positron emission tomography. Ann. Biomed. Eng. 39, 1358–1377 (2011). doi:10.1007/s10439-011-0266-9

    Article  Google Scholar 

  3. H.S. Yoon, G.B. Ko, S.I. Kwon et al., Initial results of simultaneous PET/MRI experiments with an MRI-compatible silicon photomultiplier PET scanner. J. Nucl. Med. 53, 608–614 (2012). doi:10.2967/jnumed.111.097501

    Article  Google Scholar 

  4. Y.J. Wang, Z.M. Zhang, D.W. Li et al., Development of a PET insert for simultaneous small animal PET/MRI. EJNMMI Phys. (2015). doi:10.1186/2197-7364-2-S1-A21

    Google Scholar 

  5. C.J. Thompson, A.L. Goertzen, J.D. Thiessen et al., Development of a PET scanner for simultaneously imaging small animals with MRI and PET. Sensors 14, 14654–14671 (2014). doi:10.3390/s140814654

    Article  Google Scholar 

  6. A. Kolb, H.F. Wehrl, M. Hofmann et al., Technical performance evaluation of a human brain PET/MRI system. Eur. Radiol. 22, 1776–1788 (2012). doi:10.1007/s00330-012-2415-4

    Article  Google Scholar 

  7. C. Bauer, A. Stolin, J. Proffitt et al., Development of a ring PET insert for MRI, in IEEE NSS/MIC Conference Record, pp. 1–9 (2013). doi:10.1109/NSSMIC.2013.6829135

  8. Y. Xia, T.Y. Ma, Y.Q. Liu et al., Imaging performance evaluation in depth-of-interaction PET with a new method of sinogram generation: a Monte Carlo simulation study. Nucl. Sci. Tech. 22, 144–150 (2011). doi:10.13538/j.1001-8042/nst.22.144-150

    Google Scholar 

  9. D.R. Schaart, H.T. van Dam, S. Seifert et al., A novel, SiPM-array-based, monolithic scintillator detector for PET. Phys. Med. Biol. 54, 3501–3512 (2009). doi:10.1088/0031-9155/54/11/015

    Article  Google Scholar 

  10. P. Bruyndonckx, S. Léonard, S. Tavernier et al., Neural network-based position estimators for PET detectors using monolithic LSO blocks. IEEE Trans. Nucl. Sci. 51, 2520–2525 (2004). doi:10.1109/TNS.2004.835782

    Article  Google Scholar 

  11. H. Liu, T. Omura, M. Watanabe et al., Development of a depth of interaction detector for γ-rays. Nucl. Instrum. Methods A 459, 182–190 (2001). doi:10.1016/S0168-9002(00)00939-6

    Article  Google Scholar 

  12. Y.P. Shao, X.S. Sun, K.A. Lan et al., Development of a prototype PET scanner with depth-of-interaction measurement using solid-state photomultiplier arrays and parallel readout electronics. Phys. Med. Biol. 59, 1223–1238 (2014). doi:10.1088/0031-9155/59/5/1223

    Article  Google Scholar 

  13. A. Kishimoto, J. Kataoka, T. Kato et al., Development of a dual-sided readout DOI-PET module using large-area monolithic MPPC-arrays. IEEE Trans. Nucl. Sci. 60, 38–43 (2013). doi:10.1109/TNS.2012.2233215

    Article  Google Scholar 

  14. P. Fan, T.Y. Ma, Q.Y. Wei et al., Choice of crystal surface finishing for a dual-ended readout depth-of-interaction (DOI) detector. Phys. Med. Biol. 61, 1041–1066 (2016). doi:10.1088/0031-9155/61/3/1041

    Article  Google Scholar 

  15. J. Seidel, J.J. Vaquero, S. Siegel et al., Depth identification accuracy of a three layer phoswich PET detector module. IEEE Trans. Nucl. Sci. 46, 485–490 (1999). doi:10.1109/23.775567

    Article  Google Scholar 

  16. C.M. Pepin, P. Bérard, A.L. Perrot et al., Properties of LYSO and recent LSO scintillators for phoswich PET detectors. IEEE Trans. Nucl. Sci. 51, 789–795 (2004). doi:10.1109/TNS.2004.829781

    Article  Google Scholar 

  17. M. Conti, State of the art and challenges of time-of-flight PET. Phys. Med. 25, 1–11 (2009). doi:10.1016/j.ejmp.2008.10.001

    Article  Google Scholar 

  18. R. Vinke, H. Löhner, D.R. Schaart et al., Optimizing the timing resolution of SiPM sensors for use in TOF-PET detectors. Nucl. Instrum. Methods A 610, 188–191 (2009). doi:10.1016/j.nima.2009.05.068

    Article  Google Scholar 

  19. C. Jackson, SensL B-Series and C-Series silicon photomultipliers for time-of-flight positron emission tomography. Nucl. Instrum. Methods A 787, 169–172 (2015). doi:10.1016/j.nima.2014.11.087

    Article  Google Scholar 

  20. Sensl.com, J Series (High Performance/TSV)—Datasheet, 2016 May 10. http://sensl.com/documentation. Accessed 21 May 2016. (Online)

  21. T.P. Xu, S. Wang, Q.Y. Wei et al., Development of multi-channel fast SiPM readout electronics for clinical TOF PET detector, in IEEE NSS/MIC Conference Record, pp. 1–3 (2014). doi:10.1109/NSSMIC.2014.7431013

  22. T.P. Xu, J. Wen, Q. Wang et al., A novel sub-millimeter resolution PET detector with TOF capability, in IEEE NSS/MIC Conference Record, pp. 1–5 (2013). doi:10.1109/NSSMIC.2013.6829019

  23. T. Song, H. Wu, S. Komarov et al., A submillimeter resolution PET detector module using a multipixel photon counter array. Phys. Med. Biol. 55, 2573–2587 (2010). doi:10.1109/TNS.2015.2499726

    Article  Google Scholar 

  24. S. Yamamoto, J.Y. Yeom, K. Kamada et al., Development of an ultrahigh resolution block detector based on 0.4 mm pixel Ce: GAGG scintillators and a silicon photomultiplier array. IEEE Trans. Nucl. Sci. 60, 4582–4587 (2013). doi:10.1109/TNS.2013.2282294

    Article  Google Scholar 

  25. Z. Deng, A.K. Lan, X. Sun et al., Development of an eight-channel time-based readout ASIC for PET applications. IEEE Trans. Nucl. Sci. 58, 3212–3218 (2011). doi:10.1109/TNS.2011.2165557

    Article  Google Scholar 

  26. J. Du, Y. Yang, X. Bai et al., Characterization of large-area SiPM array for PET applications. IEEE Trans. Nucl. Sci. 63, 8–16 (2016). doi:10.1109/TNS.2015.2499726

    Article  Google Scholar 

  27. V. Schulz, B. Weissler, P. Gebhard et al., SiPM based preclinical PET/MR insert for a human 3T MR: first imaging experiments, in IEEE NSS/MIC Conference Record, pp. 4467–4469 (2011). doi:10.1109/NSSMIC.2011.6152496

  28. Q.Y. Wei, S. Wang, T.T. Dai et al., SiPM based PET detector modules with air-gapped pixelated LYSO, in IEEE NSS/MIC Conference Record, pp. 1–3 (2014). doi: 10.1109/NSSMIC.2014.7431198

  29. G. Stortz, M.D. Walker, C.J. Thompson et al., Characterization of a new MR compatible small animal PET scanner using Monte-Carlo simulations. IEEE Trans. Nucl. Sci. 60, 1637–1644 (2013). doi:10.1109/TNS.2013.2256927

    Article  Google Scholar 

  30. N. Zhang, C.J. Thompson, D. Togane et al., Anode position and last dynode timing circuits for dual-layer BGO scintillator with PS-PMT based modular PET detectors. IEEE Trans. Nucl. Sci. 49, 2203–2207 (2002). doi:10.1109/TNS.2002.803815

    Article  Google Scholar 

  31. X. Zhang, G. Stortz, V. Sossi et al., Development and evaluation of a LOR-based image reconstruction with 3D system response modeling for a PET insert with dual-layer offset crystal design. Phys. Med. Biol. 58, 8379 (2013). doi:10.1088/0031-9155/58/23/8379

    Article  Google Scholar 

  32. X.Z. Zhu, Z. Deng, Y. Chen et al., Development of a 64-channel readout ASIC for an 8 × 8 SiPM array for PET and TOF-PET applications. IEEE Trans. Nucl. Sci. 63, 1327–1334 (2016). doi:10.1109/TNS.2016.2518808

    Article  Google Scholar 

  33. R.T. Yao, T.Y. Ma, Y.P. Shao, Lutetium oxyorthosilicate (LSO) intrinsic activity correction and minimal detectable target activity study for SPECT imaging with a LSO-based animal PET scanner. Phys. Med. Biol. 53, 4399–4415 (2008). doi:10.1088/0031-9155/53/16/012

    Article  Google Scholar 

  34. Q.Y. Wei, T.T. Dai, T.Y. Ma et al., Crystal identification in dual-layer-offset DOI-PET detectors using stratified peak tracking based on SVD and mean-shift algorithm. IEEE Trans. Nucl. Sci. 63, 2502–2508 (2016). doi:10.1109/TNS.2016.2590505

    Article  Google Scholar 

  35. Q.Y. Wei, S. Wang, T.Y. Ma et al., Performance evaluation of a compact PET/SPECT/CT tri-modality system for small animal imaging applications. Nucl. Instrum. Methods A 786, 147–154 (2015). doi:10.1016/j.nima.2015.03.045

    Article  Google Scholar 

  36. Q.Y. Wei, S. Wang, T.Y. Ma et al., Influence factors of two dimensional position map on photomultiplier detector block designed by quadrant sharing technique. Nucl. Sci. Technol. 22, 224–229 (2011). doi:10.13538/j.1001-8042/nst.22.224-229

    Google Scholar 

Download references

Acknowledgements

We thank Prof. Ru-Tao Yao with University at Buffalo for improvement of the text.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Gu or Tian-Yu Ma.

Additional information

This work was supported in part by Fundamental Research Funds for the Central Universities (No. FRF-TP-15-114A1), National Natural Science Foundation of China (Nos. 11375096, 11505300), and Tsinghua University Initiative Scientific Research Program (No. 20131089289).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, QY., Xu, TP., Dai, TT. et al. Development of a compact DOI–TOF detector module for high-performance PET systems. NUCL SCI TECH 28, 43 (2017). https://doi.org/10.1007/s41365-017-0202-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0202-2

Keywords

Navigation