Skip to main content
Log in

A time and charge measurement board for muon tomography of high-Z materials

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In this paper, a versatile time and charge measurement (MQT) board for muon tomography is described in detail. For time measurement, the general-purpose time-to-digital converter (TDC) chip TDC-GP2 is employed, while for charge measurement, digitization plus numerical integration in field programmable gate array is employed. Electronic tests demonstrate that the total 32 channels of two MQT boards have a time resolution of superior than 100 ps, with excellent linearity for time and charge measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.N. Borozdin, G.E. Hogan, C. Morris et al., Surveillance: radiographic imaging with cosmic-ray muons. Nature 422, 277 (2003). doi:10.1038/422277a

    Article  Google Scholar 

  2. K. Gnanvo, L.V. Grasso, M. Hohlmann et al., Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors. Nucl. Instrum. Methods A 652, 16–20 (2011). doi:10.1016/j.nima.2011.01.163

    Article  Google Scholar 

  3. L. Cox, P. Adsley, J. O. Malley et al., Detector requirements for a cosmic ray muon scattering tomography system. Nuclear Science Symposium Conference Record, 2008. NSS’08. IEEE (2008), pp. 706–710. doi:10.1109/NSSMIC.2008.4775227

  4. Y.G. Xie, C. Chen, M. Wang et al., Particle Detectors and Data Acquisition (Science Press, Beijing, 2003), pp. 91–104. (in Chinese)

    Google Scholar 

  5. B.E.S.I.I.I. Collaboration, Design and construction of the BESIII detector. Nucl. Instrum. Methods A 614, 345–399 (2010). doi:10.1016/j.nima.2009.12.050

    Article  Google Scholar 

  6. L. Zhao, L.F. Kang, J.W. Zhou et al., A 16-channel high-resolution time and charge measurement module for the external target experiment in the CSR of HIRFL. Nucl. Sci. Tech. 25, 010401 (2014). doi:10.13538/j.1001-8042/nst.25.010401

    Google Scholar 

  7. Q. An, Review of methods and techniques of precise interval measurements for particle physics experiments. Nucl. Technol. 29, 6 (2006). (in Chinese)

    Google Scholar 

  8. L. Dong, J.F. Yang, K.Z. Song, Carry-chain propagation delay impacts on resolution of FPGA-based TDC. Nucl. Sci. Tech. 25, 030401 (2014). doi:10.13538/j.1001-8042/nst.25.030401

    Google Scholar 

  9. X. Qin, C.Q. Feng, D.L. Zhang et al., A low dead time vernier delay line TDC implemented in an actel flash-based FPGA. Nucl. Sci. Tech. 24, 040403 (2013)

    Google Scholar 

  10. Acam Messelectronic. TDC-GP2: 2-Channel Universal Time-to-Digital Converter. Version2.0 (2010). www.acam.de

  11. Z.H. Ma, M. Li, Research on pulse hand-held laser rangefinder based TDC-GP2. 2nd International Conference on Computer Engineering and Technology (ICCET), 2010 (2010). doi:10.1109/ICCET.2010.5485982

  12. F. Dou, H. Liang, L. Zhou et al., A precise time measurement evaluation board for a tomography system of high-Z materials. Nucl. Sci. Tech. 23, 5 (2012). doi:10.13538/j.1001-8042/nst.23.284-288

    Google Scholar 

  13. F.S. Goulding, Pulse-shaping in low-noise nuclear amplifiers: a physical approach to noise analysis. Nucl. Instrum. Methods 100, 493–504 (1972). doi:10.1016/0029-554X(72)90828-2

    Article  Google Scholar 

  14. P. Grybos, R. Szczygiel, Pole-zero cancellation circuit with pulse pile-up tracking system for low noise charge-sensitive amplifiers. IEEE Trans. Nucl. Sci. 55, 583–590 (2008). doi:10.1109/TNS.2007.914018

    Article  Google Scholar 

  15. C. Chen, W.W. Fan, Y.H. Pan et al., A multi-channel real-time digital integrator for magnetic diagnostics in HL-2A tokamak. Nucl. Sci. Tech. 27, 14 (2016). doi:10.1007/s41365-016-0006-9

    Article  Google Scholar 

  16. S.B. Liu, C.Q. Feng, H. Yan et al., LUT-based non-linearity compensation for BES III TOF’s time measurement. Nucl. Sci. Tech. 21, 49–53 (2010). doi:10.13538/j.1001-8042/nst.21.49-53

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Liang.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 11005108).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, ST., Liang, H. A time and charge measurement board for muon tomography of high-Z materials. NUCL SCI TECH 28, 40 (2017). https://doi.org/10.1007/s41365-017-0183-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0183-1

Keywords

Navigation