Skip to main content

Advertisement

Log in

In-situ high-energy-resolution X-ray absorption spectroscopy for UO2 oxidation at SSRF

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Based on the high-energy-resolution fluorescence spectrometer on the BL14W1 beamline at Shanghai Synchrotron Radiation Facility, an in-situ high-energy-resolution X-ray absorption spectroscopy technique, with an in-situ heating cell, was developed. The high-energy-resolution fluorescence detection for X-ray absorption near-edge spectroscopy (HERFD-XANES) was tested in a UO2 oxidation experiment to measure the U L3-edge, with higher signal-to-noise ratio and higher-energy-resolution than conventional XANES. The technique has potential application for in-situ study of uranium-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R.J. McEachern, P. Taylor, A review of the oxidation of uranium dioxide at temperatures below 400 °C. J Nucl Mater. 254, 87–121 (1998). doi:10.1016/S0022-3115(97)00343-7

    Article  Google Scholar 

  2. L. Desgranges, G. Baldinozzi, G. Rousseau et al., Neutron diffraction study of the in situ oxidation of UO(2). Inorg Chem. 48, 7585–7592 (2009). doi:10.1021/ic9000889

    Article  Google Scholar 

  3. W.Q. Shi, L.Y. Yuan, C.Z. Wang et al., Exploring actinide materials through synchrotron radiation techniques. Adv Mater. 26, 7807–7848 (2014). doi:10.1002/adma.201304323

    Article  Google Scholar 

  4. T. Prüßmann, M.A. Denecke, A. Geist et al., Comparative investigation of N donor ligand-lanthanide complexes from the metal and ligand point of view. J Phys Conf Ser. 430, 012115 (2013). doi:10.1088/1742-6596/430/1/012115

    Article  Google Scholar 

  5. C.H. Booth, Y. Jiang, D.L. Wang et al., Multiconfigurational nature of 5f orbitals in uranium and plutonium intermetallics. Proc Natl Acad Sci USA. 109, 10205–10209 (2012). doi:10.1073/pnas.1200725109

    Article  Google Scholar 

  6. T. Vitova, M.A. Denecke, J. Göttlicher et al., Actinide and lanthanide speciation with high-energy resolution X-ray techniques. J Phys Conf Ser. 430, 012117 (2013). doi:10.1088/1742-6596/430/1/012117

    Article  Google Scholar 

  7. K.O. Kvashnina, Y.O. Kvashnin, S.M. Butorin, Role of resonant inelastic X-ray scattering in high-resolution core-level spectroscopy of actinide materials. J Electron Spectrosc Relat Phenom. 194, 27–36 (2014). doi:10.1016/j.elspec.2014.01.016

    Article  Google Scholar 

  8. C.J. Nelin, P.S. Bagus, E.S. Ilton, Theoretical analysis of the U L3-edge NEXAFS in U oxides. RSC Adv. 4, 7148 (2014). doi:10.1039/c3ra46738d

    Article  Google Scholar 

  9. K. Kvashnina, Y. Kvashnin, J.R. Vegelius et al., Sensitivity to actinide doping of uranium compounds by resonant inelastic X-ray scattering at uranium L-3 Edge. Anal Chem. 87, 8772–8780 (2015). doi:10.1021/acs.analchem.5b01699

    Article  Google Scholar 

  10. J.G. Tobin, S.W. Yu, R. Qiao et al., Covalency in oxidized uranium. Phys Rev B. (2015). doi:10.1103/PhysRevB.92.045130

    Google Scholar 

  11. A. Walshe, T. Prussmann, T. Vitova et al., An EXAFS and HR-XANES study of the uranyl peroxides [UO2(eta2-O2)(H2O)2]·nH2O (n = 0, 2) and uranyl (oxy)hydroxide [(UO2)4O(OH)6]·6H2O. Dalton Trans. 43, 4400–4407 (2014). doi:10.1039/c3dt52437j

    Article  Google Scholar 

  12. T. Vitova, K.O. Kvashnina, G. Nocton et al., High energy resolution X-ray absorption spectroscopy study of uranium in varying valence states. Phys Rev B. (2010). doi:10.1103/Physrevb.82.235118

    Google Scholar 

  13. J.G. Tobin, S.W. Yu, C.H. Booth et al., Oxidation and crystal field effects in uranium. Phys Rev B (2015). doi:10.1103/PhysRevB.92.035111

    Google Scholar 

  14. X.-D. Wen, M.W. Löble, E.R. Batista et al., Electronic structure and O K-edge XAS spectroscopy of U3O8. J Electron Spectrosc Relat Phenom. 194, 81–87 (2014). doi:10.1016/j.elspec.2014.03.005

    Article  Google Scholar 

  15. X. Gao, S. Gu, Q. Gao et al., A high-resolution X-ray fluorescence spectrometer and its application at SSRF. X-Ray Spectrom. 42, 502–507 (2013). doi:10.1002/xrs.2511

    Article  Google Scholar 

  16. H.S. Yu, X.J. Wei, J. Li et al., The XAFS beamline of SSRF. Nucl Sci Tech. 26, 050102 (2015). doi:10.13538/j.1001-8042/nst.26.050102

    Google Scholar 

  17. M.A. Denecke, Actinide speciation using X-ray absorption fine structure spectroscopy. Coord Chem Rev. 250, 730–754 (2006). doi:10.1016/j.ccr.2005.09.004

    Article  Google Scholar 

  18. L. Martel, J.-F. Vigier, D. Prieur et al., Structural investigation of Uranium–Neptunium mixed oxides using XRD, XANES, and 17O MAS NMR. J Phys Chem C. 118, 27640–27647 (2014). doi:10.1021/jp507088t

    Article  Google Scholar 

  19. S.D. Conradson, D. Manara, F. Wastin et al., Local structure and charge distribution in the UO2-U4O9 system. Inorg Chem. 43, 6922–6935 (2004). doi:10.1021/ic049748z

    Article  Google Scholar 

  20. K.O. Kvashnina, S.M. Butorin, P. Martin et al., Chemical state of complex uranium oxides. Phys Rev Lett. 111, 253002 (2013). doi:10.1103/PhysRevLett.111.253002

    Article  Google Scholar 

  21. P.E. Blackburn, J. Weissbart, E.A. Gulbranson, Oxidation of uranium dioxide. J Phys Chem. 62, 902–908 (1958). doi:10.1021/j150566a002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Ying Huang.

Additional information

This work was supported by the National Nature Science Foundation of China (Nos. 11175244 and U1532259).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, PQ., Bao, HL., Li, J. et al. In-situ high-energy-resolution X-ray absorption spectroscopy for UO2 oxidation at SSRF. NUCL SCI TECH 28, 2 (2017). https://doi.org/10.1007/s41365-016-0155-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0155-x

Keywords

Navigation