Skip to main content
Log in

Erosion of tungsten surfaces in He and Ar/He plasma

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Irradiation tests of tungsten surface were performed with He and He/Ar plasma generated by microwave electron cyclotron resonance. Thickness loss was used as the erosion rate of tungsten surface under the plasma irradiation. The results revealed that the thickness loss increased linearly with negative bias. SEM images proved that the addition of Ar apparently increased the plasma erosion. The thickness loss increased sharply with the Ar fraction of Ar/He mixture when it was <20 %, where the increasing slope of thickness loss lowered down gradually.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Wurster, N. Baluc, M. Battabyal et al., Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials. J. Nucl. Mater. 442, S181–S189 (2013). doi:10.1016/j.jnucmat.2013.02.074

    Article  Google Scholar 

  2. J. Roth, E. Tsitrone, A. Loarte et al., Recent analysis of key plasma wall interactions issues for ITER. J. Nucl. Mater. 390–391, 1–9 (2009). doi:10.1016/j.jnucmat.2009.01.037

    Article  Google Scholar 

  3. H. Bolt, V. Barabash, W. Krauss et al., Materials for the plasma-facing components of fusion reactors. J. Nucl. Mater. 329–333, 66–73 (2004). doi:10.1016/j.jnucmat.2004.04.005

    Article  Google Scholar 

  4. G.-N. Luo, W.M. Shu, H. Nakamura et al., Ion species control in high flux deuterium plasma beams produced by a linear plasma generator. Rev. Sci. Instrum. 75, 4374–4378 (2004). doi:10.1063/1.1807006

    Article  Google Scholar 

  5. W.M. Shu, M. Nakamichi, Alimov V. Kh et al., Deuterium retention, blistering and local melting at tungsten exposed to high-fluence deuterium plasma. J. Nucl. Mater. 390–391, 1017–1021 (2009). doi:10.1016/j.jnucmat.2009.01.267

    Article  Google Scholar 

  6. D. Nishijima, T. Sugimoto, H. Iwakiri et al., Characteristic changes of deuterium retention on tungsten surfaces due to low-energy helium plasma pre-exposure. J. Nucl. Mater. 337–339, 927–931 (2005). doi:10.1016/j.jnucmat.2004.10.011

    Article  Google Scholar 

  7. O.V. Ogorodnikova, J. Roth, M. Mayer, Ion-driven deuterium retention in tungsten. J. Appl. Phys. 103, 034902 (2008). doi:10.1063/1.2828139

    Article  Google Scholar 

  8. T. Tanabe, Review of hydrogen retention in tungsten. Phys. Scr. T159, 014044 (2014). doi:10.1088/0031-8949/2014/T159/014044

    Article  Google Scholar 

  9. S. Kajita, W. Sakaguchi, N. Ohno et al., Formation process of tungsten nanostructure by the exposure to helium plasma under fusion relevant plasma conditions. Nucl. Fusion 49, 095005 (2009). doi:10.1088/0029-5515/49/9/095005

    Article  Google Scholar 

  10. D. Nishijima, M.Y. Ye, N. Ohno et al., Formation mechanism of bubbles and holes on tungsten surface with low-energy and high-flux helium plasma irradiation in NAGDIS-II. J. Nucl. Mater. 329–333, 1029–1033 (2004). doi:10.1016/j.jnucmat.2004.04.129

    Article  Google Scholar 

  11. S. Takamura, T. Miyamoto, Y. Tomida et al., Investigation on the effect of temperature excursion on the helium defects of tungsten surface by using compact plasma device. J. Nucl. Mater. 415, S100–S103 (2011). doi:10.1016/j.jnucmat.2010.12.021

    Article  Google Scholar 

  12. K. Tokunaga, S. Tamura, N. Yoshida et al., Synergistic effects of high heat loading and helium irradiation of tungsten. J. Nucl. Mater. 329–333, 757–760 (2004). doi:10.1016/j.jnucmat.2004.04.178

    Article  Google Scholar 

  13. T.Y. An, H.Y. Fan, Y. Wang et al., Influence of irradiation temperature on the surface damage of tungsten. Nuclear Techniques 37(9), 090201 (2014). doi:10.11889/j.0253-3219.2014.hjs.37.090201

    Google Scholar 

  14. J.B. Lin, A.G. Li, S.M. He et al., Investigation on corrosion resistance of Hastelloy N alloy after He+ ion irradiation. Nucl. Tech. 37(5), 050601 (2014). (in Chinese)

    Google Scholar 

  15. Y. Wang, H. Fan, M.Y. LYU et al., Influence of low energy and high-flux He ion irradiation on the surface damage of Mo, Nuclear Techniques 37(12), 120204 (2014). doi:10.11889/j.0253-3219.2014.hjs.37.120204

    Google Scholar 

  16. A. Kreter, D. Nishijima, M.J. Baldwin et al., Mitigation of carbon erosion in beryllium seeded deuterium plasma under bombardment by argon and helium ions in PISCES-B. J. Nucl. Mater. 417, 651–654 (2011). doi:10.1016/j.jnucmat.2010.12.098

    Article  Google Scholar 

  17. T. Sizyuk, A. Hassanein, Effect of surface segregation and mobility on erosion of plasma-facing materials in magnetic fusion systems. J. Nucl. Mater. 458, 312–318 (2015). doi:10.1016/j.jnucmat.2014.12.105

    Article  Google Scholar 

  18. B. Khripunov, V. Gureev, V. Koidan et al., Erosion and deuterium retention in ion-irradiated tungsten under plasma exposure. J. Nucl. Mater. (2015). doi:10.1016/j.jnucmat.2014.12.115

    Google Scholar 

  19. K. Krieger, H. Maier, the ASDEX Upgrade Team, Conclusions about the use of tungsten in the divertor of ASDEX Upgrade. J. Nucl. Mater. 266–269, 207–216 (1999). doi:10.1016/S0022-3115(98)00890-3

    Article  Google Scholar 

  20. M. Rieth, S.L. Dudarev, S.M. Gonzalez de Vicente et al., Recent progress in research on tungsten materials for nuclear fusion applications in Europe. J. Nucl. Mater. 432, 482–500 (2013). doi:10.1016/j.jnucmat.2012.08.018

    Article  Google Scholar 

  21. A. Kallenbach, M. Bernert, R. Dux et al., Impurity seeding for tokamak power exhaust from present devices via ITER to DEMO. Plasma Phys. Control Fusion 55, 124041 (2013). doi:10.1088/0741-3335/55/12/124041

    Article  Google Scholar 

  22. K. Katayama, K. Imaoka, T. Okamura et al., Helium and hydrogen trapping in tungsten deposition layers formed by helium plasma sputtering, Fusion Eng Des 82, 1645–1650 (2007). doi:10.1016/j.fusengdes.2007.04.026

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Magnetic Confinement Fusion Program (Grant No. 2013GB109003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Wang, B., Zhang, ZL. et al. Erosion of tungsten surfaces in He and Ar/He plasma. NUCL SCI TECH 27, 37 (2016). https://doi.org/10.1007/s41365-016-0049-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0049-y

Keywords

Navigation