Skip to main content
Log in

Estimating the multivariable human ankle impedance in dorsi-plantarflexion and inversion-eversion directions using EMG signals and artificial neural networks

International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

The use of a suitably designed ankle-foot prosthesis is essential for transtibial amputees to regain lost mobility. A desired ankle–foot prosthesis must be able to replicate the function of a healthy human ankle by transferring the ground reaction forces to the body, absorbing shock during contact, and providing propulsion. During the swing phase of walking, the human ankle is soft and relaxed; however, it hardens as it bears the body weight and provides force for push-off. The stiffness is one of the components of the mechanical impedance, and it varies with muscle activation (Stochastic estimation of human ankle mechanical impedance in medial-lateral direction, 2014, Stochastic estimation of the multivariable mechanical impedance of the human ankle with active muscles, 2010). This study defines the relationship between ankle impedance and the lower extremity muscle activations using artificial neural networks (ANN). We used the Anklebot, a highly backdrivable, safe, and therapeutic robot to apply stochastic position perturbations to the human ankle in the sagittal and frontal planes. A previously proposed system identification method was used to estimate the target ankle impedance to train the ANN. The ankle impedance was estimated with relaxed muscles and with lower leg muscle activations at 10 and 20% of the maximum voluntary contraction (MVC) of each individual subject. Given the root mean squared (rms) of the electromyography (EMG) signals, the proposed ANN effectively predicted the ankle impedance with mean accuracy of 89.8 ± 6.1% in DP and mean accuracy of 88.3 ± 5.7% in IE, averaged across three muscle activation levels and all subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Barbero, M., Merletti, R., Rainoldi, A.: Atlas of muscle innervation zones: understanding surface electromyography and its applications. Springer, Mailand (2012)

  • Braun, D.J., Mitchell, J.E., Goldfarb, M.: Actuated dynamic walking in a seven-link biped robot. Mechatron. IEEE/ASME Trans. 17(1), 147–156 (2012)

    Article  Google Scholar 

  • Chau, T.: A review of analytical techniques for gait data. Part 2: neural network and wavelet methods. Gait Posture 13(2), 102–120 (2001)

    Article  MathSciNet  Google Scholar 

  • Davis, R.B., DeLuca, P.A.: Gait characterization via dynamic joint stiffness. Gait Posture 4(3), 224–231 (1996)

    Article  Google Scholar 

  • Davy, D., Audu, M.: A dynamic optimization technique for predicting muscle forces in the swing phase of gait. J. Biomech. 20(2), 187–201 (1987)

    Article  Google Scholar 

  • Ficanha, E., Rastgaar, M., Kaufman, K.R.: Gait emulator for evaluation of ankle--foot prostheses capable of turning. ASME J. Med. Device 9(3), 0309081–0309082 (2015)

    Article  Google Scholar 

  • Ficanha, E. M., Rastgaar, M.: Preliminary design and evaluation of a multi-axis ankle--foot prosthesis. In: 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob (2014)

  • Ficanha, E. M., Rastgaar, M.: Stochastic estimation of human ankle mechanical impedance in medial-lateral direction. In: ASME Dynamic Systems and Control Conference (DSCC) (2014)

  • Ficanha, E.M., Rastgaar, M., Kaufman, K.R.: A two-axis cable-driven ankle--foot mechanism. Robot. Biomim. 1, 17 (2014)

    Article  Google Scholar 

  • Ficanha, E. M., Rastgaar, M., Kaufman, K. R.: Control of a 2-dof powered ankle-foot mechanism. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 6439–6444 (2015)

  • Ficanha, E. M., Ribeiro, G., Rastgaar, M.: Instrumented walkway for estimation of the ankle impedance in dorsiflexion–plantarflexion and inversion–eversion during standing and walking. In: ASME 2015 Dynamic Systems and Control Conference (2015), American Society of Mechanical Engineers, pp. V003T42A001–V003T42A001 (2015)

  • Ficanha, E.M., Ribeiro, G.A., Rastgaar, M.: Mechanical impedance of the non-loaded lower leg with relaxed muscles in the transverse plane. Front. Bioeng. Biotechnol. 3, 198 (2015)

    Article  Google Scholar 

  • Ficanha, E.M., Ribeiro, G.A., Rastgaar, M.: Design and evaluation of a 2-dof instrumented platform for estimation of the ankle mechanical impedance in the sagittal and frontal planes. IEEE-ASME Trans. Mechatron. 21(5), 2531–2542 (2016)

    Article  Google Scholar 

  • Funahashi, K.I.: On the approximate realization of continuous mappings by neural networks. Neural Netw. 2(3), 183–192 (1989)

    Article  Google Scholar 

  • Glaister, B., Bernatz, G., Klute, G., Orendurff, M.: Video task analysis of turning during activities of daily living. Gait Posture 25(2), 289–94 (2007)

    Article  Google Scholar 

  • Glaister, B., Schoen, A., Orendurff, M.S., Klute, G.K.: A mechanical model of the human ankle in the transverse plane during straight walking: implications for prosthetic design. J. Biomech. Eng. 131, 3 (2009)

    Google Scholar 

  • Gumerov, N.A., Duraiswami, R.: Fast radial basis function interpolation via preconditioned Krylov iteration. SIAM J. Sci. Comput. 29(5), 1876–1899 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen, A.H., Childress, D.S., Miff, S.C., Gard, S.A., Mesplay, K.P.: The human ankle during walking: implications for design of biomimetic ankle prostheses. J. Biomech. 37(10), 1467–1474 (2004)

    Article  Google Scholar 

  • Hincapie, J.G., Kirsch, R.F.: Feasibility of EMG-based neural network controller for an upper extremity neuroprosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 17(1), 80–90 (2009)

    Article  Google Scholar 

  • Hinton, G.E.: Connectionist learning procedures. Artif. Intell. 40(1), 185–234 (1989)

    Article  Google Scholar 

  • Ho, P., Lee, H., Krebs, H. I., Hogan, N.: Directional variation of active and passive ankle static impedance. In: ASME Dynamic Systems and Control Conference (2009)

  • Hunter, I., Kearney, R.: Dynamics of human ankle stiffness: variation with mean ankle torque. J. Biomech. 15(10), 747–752 (1982)

    Article  Google Scholar 

  • Iqbal, K., Roy, A.: A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model. J. Biomech. Eng. 131(1), 011002 (2009)

    Article  Google Scholar 

  • Jinoh, L., Pyung Hun, C., Jamisola, R.S.: Relative impedance control for dual-arm robots performing asymmetric bimanual tasks. Ind. Electron. IEEE Trans. 61(7), 3786–3796 (2014)

    Article  Google Scholar 

  • Karsoliya, S.: Approximating number of hidden layer neurons in multiple hidden layer BPNN architecture. Int. J. Eng. Trends Technol. 3(6), 713–717 (2012)

    Google Scholar 

  • Kearney, R., Hunter, I.: Dynamics of human ankle stiffness: variation with displacement amplitude. J. Biomech. 15(10), 753–756 (1982)

    Article  Google Scholar 

  • Kearney, R.E., Stein, R.B., Parameswaran, L.: Identification of intrinsic and reflex contributions to human ankle stiffness dynamics. Biomed. Eng. IEEE Trans. 44(6), 493–504 (1997)

    Article  Google Scholar 

  • Kim, H.K., Kang, B., Kim, B., Park, S.: Estimation of multijoint stiffness using electromyogram and artificial neural network. IEEE Trans. Syst. Man Cybern. Part A Syst Hum 39(5), 972–980 (2009)

    Article  Google Scholar 

  • Kleijnen, J.P.C.: Kriging metamodeling in simulation: a review. Eur. J. Oper. Res. 192(3), 707–716 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Koike, Y., Kawato, M., van Soest, A., Stroeve, S.: Estimation of movement from surface EMG signals using a neural network model. Springer, New York, pp. 440–457 (2000)

    Google Scholar 

  • Lamontagne, A., Malouin, F., Richards, C.L.: Viscoelastic behavior of plantar flexor muscle-tendon unit at rest. J. Orthop. Sports Phys. Ther. 26(5), 244–252 (1997)

    Article  Google Scholar 

  • Lee, H., Ho, P., Rastgaar, M., Krebs, H. I., Hogan, N.: Quantitative characterization of steady-state ankle impedance with muscle activation. In: ASME Dynamic Systems and Control Conference (2010)

  • Lee, H., Ho, P., Rastgaar, M., Krebs, H.I., Hogan, N.: Multivariable static ankle mechanical impedance with relaxed muscles. J. Biomech. 44, 1901–1908 (2011)

    Article  Google Scholar 

  • Lee, H., Ho, P., Rastgaar, M., Krebs, H.I., Hogan, N.: Multivariable static ankle mechanical impedance with active muscles. IEEE Trans. Neural Syst. Rehabil. Eng. 22(1), 44–52 (2014)

    Article  Google Scholar 

  • Lee, H., Hogan, N.: Time-varying ankle mechanical impedance during human locomotion. IEEE Trans. Neural Syst. Rehabil. Eng. 62, 755–764 (2014)

    Google Scholar 

  • Lee, H., Krebs, H.I., Hogan, N.: Multivariable dynamic ankle mechanical impedance with active muscles. Neural Syst. Rehabil. Eng. IEEE Trans. 22(5), 971–981 (2014)

    Article  Google Scholar 

  • Lee, H., Krebs, H.I., Hogan, N.: Multivariable dynamic ankle mechanical impedance with relaxed muscles. IEEE Trans. Neural Syst. Rehabil. Eng. 22(6), 1104–1114 (2014)

    Article  Google Scholar 

  • Lee, H., Wang, S., Hogan, N.: Relationship between ankle stiffness structure and muscle activation. In: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, pp. 4879–4882 (2012)

  • Ludvig, D., Kearney, R.E.: Real-time estimation of intrinsic and reflex stiffness. IEEE Trans. Biomed. Eng. 54(10), 1875–1884 (2007)

    Article  Google Scholar 

  • Ohno-Machado, L., Rowland, T.: Neural network applications in physical medicine and rehabilitation1. Am J. Phys. Med. Rehabil. 78(4), 392–398 (1999)

    Article  Google Scholar 

  • Osu, R., Gomi, H.: Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals. J. Neurophysiol. 81(4), 1458–1468 (1999)

    Google Scholar 

  • Palmer, M.L.: Sagittal plane characterization of normal human ankle function across a range of walking gait speeds. University of Utah, Thesis (2002)

  • Rastgaar, M., Ho, P., Lee, H., Krebs, H. I., Hogan, N.: Stochastic estimation of multi-variable human ankle mechanical impedance. In: ASME Dynamic Systems and Control Conference (2009)

  • Rastgaar, M., Ho, P., Lee, H., Krebs, H. I., Hogan, N.: Stochastic estimation of the multi-variable mechanical impedance of the human ankle with active muscles. In: ASME Dynamic Systems and Control Conference (2010)

  • Rastgaar, M., Lee, H., Ficanha, E.M., Ho, P., Krebs, H.I., Hogan, N.: Multi-directiOnal Dynamic Mechanical Impedance Of The Human Ankle A Key To Anthropomorphism In Lower Extremity Assistive Robots. Springer, New York (2014). (book section 4)

    Book  Google Scholar 

  • Roy, A., Krebs, H.I., Williams, D.J., Bever, C.T., Forrester, L.W., Macko, R.M., Hogan, N.: Robot-aided neurorehabilitation: a novel robot for ankle rehabilitation. IEEE Trans. Robot. 25(3), 569–582 (2009)

    Article  Google Scholar 

  • Schöllhorn, W.I.: Applications of artificial neural nets in clinical biomechanics. Clin. Biomech. 19(9), 876–898 (2004)

    Article  Google Scholar 

  • Sepulveda, F., Wells, D.M., Vaughan, C.L.: A neural network representation of electromyography and joint dynamics in human gait. J. Biomech. 26(2), 101–109 (1993)

    Article  Google Scholar 

  • Sheela, K. G., Deepa, S.: Review on methods to fix number of hidden neurons in neural networks. Math. Probl. Eng. (2013). doi:10.1155/2013/425740

  • Sinkjaer, T., Toft, E., Andreassen, S., Hornemann, B.C.: Muscle stiffness in human ankle dorsiflexors: intrinsic and reflex components. J. Neurophysiol. 60(3), 1110–1121 (1988)

    Google Scholar 

  • Smith, D.G., Fergason, J.R.: Transtibial amputations. Clin. Ortho. Relat. Res. 361, 108–115 (1999)

    Article  Google Scholar 

  • Soares, A., Andrade, A., Lamounier, E., Carrijo, R.: The development of a virtual myoelectric prosthesis controlled by an EMG pattern recognition system based on neural networks. J. Intell. Inf. Syst. 21(2), 127–141 (2003)

    Article  Google Scholar 

  • Taylor, M.J.D., Dabnichki, P., Strike, S.C.: A three-dimensional biomechanical comparison between turning strategies during the stance phase of walking. Hum. Mov. Sci. 24, 558–573 (2005)

    Article  Google Scholar 

  • Todorov, E.: Optimality principles in sensorimotor control. Nat. Neurosci. 7(9), 907–915 (2004)

    Article  Google Scholar 

  • Unuma, M., Anjyo, K., Takeuchi, R.: Fourier principles for emotion-based human figure animation. In: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques (1995), ACM, pp. 91–96 (1995)

  • Wang, L., Buchanan, T.S.: Prediction of joint moments using a neural network model of muscle activations from EMG signals. IEEE Trans. Neural Syst. Rehabil. Eng. 10(1), 30–37 (2002)

    Article  Google Scholar 

  • Weiss, P., Kearney, R., Hunter, I.: Position dependence of ankle joint dynamics—I. Passive mechanics. J. Biomech. 19(9), 727–735 (1986)

    Article  Google Scholar 

  • Weiss, P.L., Kearney, R., Hunter, I.: Position dependence of ankle joint dynamics—II. Active mechanics. J. Biomech. 19(9), 737–751 (1986)

    Article  Google Scholar 

  • Weyand, P.G., Sternlight, D.B., Bellizzi, M.J., Wright, S.: Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J. Appl. Physiol. 89, 1991–1999 (2000)

    Google Scholar 

  • Ziegler-Graham, K., MacKenzie, E.J., Ephraim, P.L., Travison, T.G., Brookmeyer, R.: Estimating The Prevalence Of Limb Loss In The United States: 2005 To 2050. Arch. Phys. Medi. Rehabil. 89(3), 422–429 (2008)

    Article  Google Scholar 

  • Zinder, S.M., Granata, K.P., Padua, D.A., Gansneder, B.M.: Validity and reliability of a new in vivo ankle stiffness measurement device. J. Biomech. 40(2), 463–467 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation under CAREER grant no. 1350154. The authors would like to thank Chen Jia for his help with the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Rastgaar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dallali, H., Knop, L., Castelino, L. et al. Estimating the multivariable human ankle impedance in dorsi-plantarflexion and inversion-eversion directions using EMG signals and artificial neural networks. Int J Intell Robot Appl 1, 19–31 (2017). https://doi.org/10.1007/s41315-016-0004-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-016-0004-4

Keywords

Navigation