Skip to main content
Log in

On the Statics of Transverse Domain Walls in Ferromagnetic Nanostrips

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

In this article, we investigate the static properties of the transverse domain wall in ferromagnetic nanostrip under the influence of a uniform transverse magnetic field. We perform the analysis under the framework of the Landau–Lifshitz–Gilbert equation, which describes the evolution of magnetization inside the ferromagnetic medium. More precisely, first, we establish the magnetization profile in the two faraway domains and then examine the static magnetization profile in the sole presence of the applied transverse magnetic field, both analytically and numerically. The obtained analytical results are in qualitatively good agreement with recent numerical simulations and experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agarwal S, Carbou G, Labbè S, Prieur C (2011) Control of a network of magnetic ellipsoidal samples. Math Control Related Fields 1(2):129–147

    MathSciNet  MATH  Google Scholar 

  • Bertotti G (1998) Hysteresis in magnetism. Academic Press, London

    Google Scholar 

  • Boulle O, Buda-Prejbeanu LD, Miron M, Gaudin G (2012) Current induced domain wall dynamics in the presence of a transverse magnetic field in out-of-plane magnetized materials. J Appl Phys 112(5):053901

    Google Scholar 

  • Bryan MT, Schrefl T, Atkinson D, Allwood DA (2008) Magnetic domain wall propagation in nanowires under transverse magnetic fields. J Appl Phys 103(7):073906

    Google Scholar 

  • Carbou G (2010) Stability of static walls for a three-dimensional model of ferromagnetic material. J Math Pures Appl 93(2):183–203

    MathSciNet  MATH  Google Scholar 

  • Chen DX, Pardo E, Sanchez A (2002) Demagnetizing factors of rectangular prisms and ellipsoids. IEEE Trans Mag 38(4):1742–1752

    Google Scholar 

  • Consolo G, Valenti G (2012) Traveling wave solutions of the one-dimensional extended Landau–Lifshitz–Gilbert equation with nonlinear dry and viscous dissipations. Acta Appl Math 122(1):141–152

    MathSciNet  MATH  Google Scholar 

  • Consolo G, Currò C, Martinez E, Valenti G (2012) Mathematical modeling and numerical simulation of domain wall motion in magnetic nanostrips with crystallographic defects. Appl Math Model 36(10):4876–4886

    MathSciNet  MATH  Google Scholar 

  • Consolo G, Curro C, Valenti G (2014) Curved domain walls dynamics driven by magnetic field and electric current in hard ferromagnets. Appl Math Model 38(3):1001–1010

    MathSciNet  MATH  Google Scholar 

  • Depassier MC (2015) Speed of field-driven domain walls in nanowires with large transverse magnetic anisotropy. EPL (Europhys Lett) 111(2):27005

    Google Scholar 

  • Dubey S, Dwivedi S (2019) On controllability of a two-dimensional network of ferromagnetic ellipsoidal samples. Differ Equ Dyn Syst 27:277–297

    MathSciNet  MATH  Google Scholar 

  • Dwivedi S (2018) On the dynamics of transverse domain walls in biaxial magnetic nanostrips with crystallographic defects. In: AIP conference proceedings, vol 1975(1). AIP Publishing, p 030028

  • Dwivedi S, Dubey S (2015a) Field-driven motion of ferrofluids in ferromagnetic nanowire under the influence of inertial effects. Procedia Eng 127:3–9

    Google Scholar 

  • Dwivedi S, Dubey S (2015b) On stability of steady-states for a two-dimensional network model of ferromagnetic nanowires. In: Agrawal P, Mohapatra R, Singh U, Srivastava H (eds) Mathematical analysis and its applications. Springer proceedings in mathematics & statistics, vol 143. Springer, New Delhi, pp 405–416

  • Dwivedi S, Dubey S (2017a) On the evolution of transverse domain walls in biaxial magnetic nanowires. Mater Today Proc 4(9):10555–10559

    Google Scholar 

  • Dwivedi S, Dubey S (2017b) On the stability of steady-states of a two-dimensional system of ferromagnetic nanowires. J Appl Anal 23(2):89–100

    MathSciNet  MATH  Google Scholar 

  • Dwivedi S, Dubey S (2017c) On dynamics of current-induced static wall profiles in ferromagnetic nanowires governed by the Rashba field. Int J Appl Comput Math 3(1):27–42

    MathSciNet  MATH  Google Scholar 

  • Dwivedi S, Dubey S (2019) Field-driven magnetization reversal in a three-dimensional network of ferromagnetic ellipsoidal samples. Rend Circ Mat Palermo II Ser. https://doi.org/10.1007/s12215-019-00414-3

    MATH  Google Scholar 

  • Dwivedi S, Singh YP, Consolo G (2020) On the statics and dynamics of transverse domain walls in Bilayer Piezoelectric-Magnetostrictive nanostructures. Appl Math Model 83:13–29

    MathSciNet  MATH  Google Scholar 

  • Glathe S, Berkov I, Mikolajick T, Mattheis R (2008) Experimental study of domain wall motion in long nanostrips under the influence of a transverse field. Appl Phys Lett 93:162505

    Google Scholar 

  • Goussev A, Lund RG, Robbins JM, Slastikov V, Sonnenberg C (2013a) Domain wall motion in magnetic nanowires: an asymptotic approach. Proc R Soc A 469(2160):20130308

    MathSciNet  MATH  Google Scholar 

  • Goussev A, Lund RG, Robbins JM, Slastikov V, Sonnenberg C (2013b) Fast domain-wall propagation in uniaxial nanowires with transverse fields. Phys Rev B 88(2):024425

    MATH  Google Scholar 

  • Hubert A, Schäfer R (2008) Magnetic domains: the analysis of magnetic microstructures. Springer, Berlin

    Google Scholar 

  • Krüger B, Pfannkuche D, Bolte M, Meier G, Merkt U (2007) Current-driven domain-wall dynamics in curved ferromagnetic nanowires. Phys Rev B 75(5):054421

    Google Scholar 

  • Kunz A, Reiff SC (2008a) Enhancing domain wall speed in nanowires with transverse magnetic fields. J Appl Phys 103(7):07D903

    Google Scholar 

  • Kunz A, Reiff SC (2008b) Fast domain wall motion in nanostripes with out-of-plane fields. Appl Phys Lett 93(8):082503

    Google Scholar 

  • Li Z, Zhang S (2004) Domain-wall dynamics driven by adiabatic spin-transfer torques. Phys Rev B 70(2):024417

    Google Scholar 

  • Li M, Wang J, Lu J (2017) General planar transverse domain walls realized by optimized transverse magnetic field pulses in magnetic biaxial nanowires. Sci Rep 7:43065

    Google Scholar 

  • Lu J (2016) Statics and field-driven dynamics of transverse domain walls in biaxial nanowires under uniform transverse magnetic fields. Phys Rev B 93(22):224406

    Google Scholar 

  • Lu J, Wang XR (2010) Motion of transverse domain walls in thin magnetic nanostripes under transverse magnetic fields. J Appl Phys 107(8):083915

    Google Scholar 

  • Mayergoyz ID, Bertotti G, Serpico C (2009) Nonlinear magnetization dynamics in nanosystems. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Mougin A, Cormier M, Adam JP, Metaxas PJ, Ferré J (2007) Domain wall mobility, stability and Walker breakdown in magnetic nanowires. EPL (Europhys Lett) 78(5):57007

    Google Scholar 

  • Nasseri SA, Moretti S, Martinez E, Serpico C, Durin G (2017) Collective coordinate models of domain wall motion in perpendicularly magnetized systems under the spin hall effect and longitudinal fields. J Mag Mag Mater 426:195–201

    Google Scholar 

  • Nasseri SA, Martinez E, Durin G (2018) Collective coordinate descriptions of magnetic domain wall motion in perpendicularly magnetized nanostructures under the application of in-plane fields. J Mag Mag Mater 468:25–43

    Google Scholar 

  • Osborn JA (1945) Demagnetizing factors of the general ellipsoid. Phys Rev 67(11–12):351

    Google Scholar 

  • Parkin SS, Hayashi M, Thomas L (2008) Magnetic domain-wall racetrack memory. Science 320(5873):190–194

    Google Scholar 

  • Richter K, Varga R, Badini-Confalonieri GA, Vázquez M (2010) The effect of transverse field on fast domain wall dynamics in magnetic microwires. Appl Phys Lett 96(18):182507

    Google Scholar 

  • Schryer NL, Walker LR (1974) The motion of \(180^{\circ }\) domain walls in uniform dc magnetic fields. J Appl Phys 45(12):5406–5421

    Google Scholar 

  • Thiaville A, Nakatani Y (2006) Domain-wall dynamics in nanowires and nanostrips. In: Hillebrands B, Thiaville A (eds) Spin dynamics in confined magnetic structures III. Topics in applied physics, vol 101. Springer, Berlin, Heidelberg, pp 161–205

  • Yershov KV, Kravchuk VP, Sheka DD, Gaididei Y (2015) Curvature-induced domain wall pinning. Phys Rev B 92(10):104412

    Google Scholar 

  • Yershov KV, Kravchuk VP, Sheka DD, Gaididei Y (2016) Curvature and torsion effects in spin-current driven domain wall motion. Phys Rev B 93(9):094418

    Google Scholar 

  • Yu M, Li M, Lu J (2019) Engineering planar transverse domain walls in biaxial magnetic nanostrips by tailoring transverse magnetic fields with uniform orientation. Nanomaterials 9(1):128

    Google Scholar 

  • Zhuo F, Sun ZZ (2016) Field-driven domain wall motion in ferromagnetic nanowires with bulk Dzyaloshinskii-Moriya interaction. Sci Rep 6:25122

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees and the handling editor for their careful reading and invaluable remarks/suggestions. S. Dwivedi remains grateful to Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India for the financial support through Project CRG/2019/003101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharad Dwivedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, S., Dubey, S. & Singh, Y.P. On the Statics of Transverse Domain Walls in Ferromagnetic Nanostrips. Iran J Sci Technol Trans Sci 44, 717–724 (2020). https://doi.org/10.1007/s40995-020-00858-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-020-00858-8

Keywords

Mathematics Subject Classification

Navigation