Skip to main content
Log in

Evaluation of Stationary and Semi-stationary Acquisitions from Dual-head Multi-pinhole Collimator for Myocardial Perfusion SPECT

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

This study investigates the performance of different stationary and semi-stationary multi-pinhole collimator (MPH) designs with a dual-head L-mode configuration as compared to that of a conventional low-energy high-resolution (LEHR) collimator for myocardial perfusion (MP) single-photon emission computed tomography (SPECT). The target field-of-view for the heart was 16 cm with a target resolution of 1 cm. The design parameters were determined by maximizing the detection efficiency based on the system design constraints. Three stationary designs (L-modes I to III) and semi-stationary designs (S-modes I to III) with four detector positions (i.e., 2 L-mode positions at various angles apart) were evaluated. We used the XCAT phantom with 99mTc-sestamibi distribution and a three-dimensional analytical MPH/LEHR projector to generate noise-free and noisy projections, which were reconstructed using the maximum-likelihood expectation–maximization algorithm with up to 180 updates. A two-dimensional (2D) region-of-interest with 32 × 32 pixels covering the central axial slice of the left ventricle was analyzed using normalized mean-squared error (NMSE), normalized standard deviation (NSD), and a 2D bias map. The optimized MPH collimator design parameters are 12 pinholes, an acceptance angle of 51°, an aperture size of 4.6 mm, a collimator length of 15.8 cm, and an imaging distance of 18.6 cm. The NMSE of L-mode II (0.326) was the lowest among all stationary designs. S-mode II/40° provided the lowest NMSE result (0.14) among all acquisitions, and was 36.1 % better than LEHR. The NSD-NMSE result showed that S-mode II/40° had the best NMSE-NSD trade-off. The 2D bias map of S-mode II/40° approached that of LEHR. Semi-stationary MPH acquisition substantially improved image quality as compared to those obtained with a full stationary design and a conventional LEHR for MP SPECT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. McGovern, P. G., Pankow, J. S., Shahar, E., Doliszny, K. M., Folsom, A. R., Blackburn, H., et al. (1996). Recent trends in acute coronary heart disease—Mortality, morbidity, medical care, and risk factors. New England Journal of Medicine, 334(14), 884–890.

    Article  Google Scholar 

  2. Ladapo, J. A., Goldfeld, K. S., & Douglas, P. S. (2015). Projected morbidity and mortality from missed diagnoses of coronary artery disease in the United States. International Journal of Cardiology, 195, 250–252.

    Article  Google Scholar 

  3. Scholte, A. J., Schuijf, J. D., Kharagjitsingh, A. V., Dibbets-Schneider, P., Stokkel, M. P., Jukema, J. W., et al. (2008). Different manifestations of coronary artery disease by stress SPECT myocardial perfusion imaging, coronary calcium scoring, and multislice CT coronary angiography in asymptomatic patients with type 2 diabetes mellitus. Journal of Nuclear Cardiology, 15(4), 503–509.

    Article  Google Scholar 

  4. Wagner, A., Mahrholdt, H., Holly, T. A., Elliott, M. D., Regenfus, M., Parker, M., et al. (2003). Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: An imaging study. The Lancet, 361(9355), 374–379.

    Article  Google Scholar 

  5. Bengel, F. M., Higuchi, T., Javadi, M. S., & Lautamäki, R. (2009). Cardiac positron emission tomography. Journal of the American College of Cardiology, 54(1), 1–15.

    Article  Google Scholar 

  6. Garber, A. M., & Solomon, N. A. (1999). Cost-effectiveness of alternative test strategies for the diagnosis of coronary artery disease. Annals of Internal Medicine, 130(9), 719–728.

    Article  Google Scholar 

  7. Cao, Z., & Tsui, B. M. (1992). Performance characteristics of transmission imaging using a uniform sheet source with parallel-hole collimation. Medical Physics, 19(5), 1205–1212.

    Article  Google Scholar 

  8. Jaszczak, R., Li, J., Wang, H., Zalutsky, M., & Coleman, R. (1994). Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT. Physics in Medicine & Biology, 39(3), 425.

    Article  Google Scholar 

  9. Vogel, R. A., Kirch, D. L., LeFree, M. T., Rainwater, J. O., Jensen, D. P., & Steele, P. P. (1979). Thallium-201 myocardial perfusion scintigraphy: Results of standard and multi-pinhole tomographic techniques. The American Journal of Cardiology, 43(4), 787–793.

    Article  Google Scholar 

  10. Beekman, F. J., van der Have, F., Vastenhouw, B., van der Linden, A. J., van Rijk, P. P., Burbach, J. P. H., et al. (2005). U-SPECT-I: A novel system for submillimeter-resolution tomography with radiolabeled molecules in mice. Journal of Nuclear Medicine, 46(7), 1194–1200.

    Google Scholar 

  11. van der Have, F., Vastenhouw, B., Ramakers, R. M., Branderhorst, W., Krah, J. O., Ji, C., et al. (2009). U-SPECT-II: An ultra-high-resolution device for molecular small-animal imaging. Journal of Nuclear Medicine, 50(4), 599–605.

    Article  Google Scholar 

  12. Nuyts, J., Vunckx, K., Defrise, M., & Vanhove, C. (2009). Small animal imaging with multi-pinhole SPECT. Methods, 48(2), 83–91.

    Article  Google Scholar 

  13. Forrer, F., Valkema, R., Bernard, B., Schramm, N. U., Hoppin, J. W., Rolleman, E., et al. (2006). In vivo radionuclide uptake quantification using a multi-pinhole SPECT system to predict renal function in small animals. European Journal of Nuclear Medicine and Molecular Imaging, 33(10), 1214–1217.

    Article  Google Scholar 

  14. Funk, T., Kirch, D. L., Koss, J. E., Botvinick, E., & Hasegawa, B. H. (2006). A novel approach to multipinhole SPECT for myocardial perfusion imaging. Journal of Nuclear Medicine, 47(4), 595–602.

    Google Scholar 

  15. Steele, P. P., Kirch, D. L., & Koss, J. E. (2008). Comparison of simultaneous dual-isotope multipinhole SPECT with rotational SPECT in a group of patients with coronary artery disease. Journal of Nuclear Medicine, 49(7), 1080–1089.

    Article  Google Scholar 

  16. Garcia, E. V., Faber, T. L., & Esteves, F. P. (2011). Cardiac dedicated ultrafast SPECT cameras: New designs and clinical implications. Journal of Nuclear Medicine, 52(2), 210–217.

    Article  Google Scholar 

  17. Imbert, L., Poussier, S., Franken, P. R., Songy, B., Verger, A., Morel, O., et al. (2012). Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: A comprehensive analysis of phantom and human images. Journal of Nuclear Medicine, 53(12), 1897–1903.

    Article  Google Scholar 

  18. Slomka, P. J., Patton, J. A., Berman, D. S., & Germano, G. (2009). Advances in technical aspects of myocardial perfusion SPECT imaging. Journal of Nuclear Cardiology, 16(2), 255–276.

    Article  Google Scholar 

  19. Bowen, J. D., Huang, Q., Ellin, J. R., Lee, T.-C., Shrestha, U., Gullberg, G. T., et al. (2013). Design and performance evaluation of a 20-aperture multipinhole collimator for myocardial perfusion imaging applications. Physics in Medicine & Biology, 58(20), 7209.

    Article  Google Scholar 

  20. Si, C., Mok, G. S., Chen, L., & Tsui, B. M. (2016). Design and evaluation of an adaptive multipinhole collimator for high-performance clinical and preclinical imaging. Nuclear Medicine Communications, 37(3), 313–321.

    Google Scholar 

  21. Mok, G. S., Wang, Y., & Tsui, B. M. (2009). Quantification of the multiplexing effects in multi-pinhole small animal SPECT: A simulation study. Nuclear Science, IEEE Transactions on, 56(5), 2636–2643.

    Article  Google Scholar 

  22. Cao, Z., Bal, G., Accorsi, R., & Acton, P. D. (2005). Optimal number of pinholes in multi-pinhole SPECT for mouse brain imaging—A simulation study. Physics in Medicine & Biology, 50(19), 4609.

    Article  Google Scholar 

  23. Rentmeester, M., Van Der Have, F., & Beekman, F. (2007). Optimizing multi-pinhole SPECT geometries using an analytical model. Physics in Medicine & Biology, 52(9), 2567.

    Article  Google Scholar 

  24. Mok, G. S., Tsui, B. M., & Beekman, F. J. (2011). The effects of object activity distribution on multiplexing multi-pinhole SPECT. Physics in Medicine & Biology, 56(8), 2635.

    Article  Google Scholar 

  25. Madsen, M. T. (2007). Recent advances in SPECT imaging. Journal of Nuclear Medicine, 48(4), 661–673.

    Article  MathSciNet  Google Scholar 

  26. Nillius, P., & Danielsson, M. (2010). Theoretical bounds and system design for multipinhole SPECT. Medical Imaging, IEEE Transactions on, 29(7), 1390–1400.

    Article  Google Scholar 

  27. Branderhorst, W., Vastenhouw, B., van der Have, F., Blezer, E. L., Bleeker, W. K., & Beekman, F. J. (2011). Targeted multi-pinhole SPECT. European Journal of Nuclear Medicine and Molecular Imaging, 38(3), 552–561.

    Article  Google Scholar 

  28. Rittenbach, A. J., Xu, J., & Tsui, B. M. (2011). Acquisition strategies of a dual head rotating 4-Segment Slant-Hole (R4SSH) SPECT system for improved myocardial perfusion SPECT Imaging. In IEEE Nuclear Science Symposium and Medical Imaging Conference Record. (pp. 3335–3338).

  29. Segars, W. P., & Tsui, B. M. (2009). MCAT to XCAT: The evolution of 4-D computerized phantoms for imaging research. Proceedings of the IEEE, 97(12), 1954–1968.

    Article  Google Scholar 

  30. Sorenson, J. A., & Phelps, M. E. (1987). Physics in Nuclear Medicine. Philadelphia: Saunders.

    Google Scholar 

  31. Koral, K. F., Clinthorne, N. H., Rogers, W. L., & Keyes, J. W., Jr. (1982). Feasibility of sharpening limited-angle tomography by including an orthogonal set of projections. Nuclear Instruments and Methods in Physics Research, 193(1), 223–227.

    Article  Google Scholar 

  32. El Fakhri, G., Buvat, I., Benali, H., Todd-Pokropek, A., & Di Paola, R. (2000). Relative impact of scatter, collimator response, attenuation, and finite spatial resolution corrections in cardiac SPECT. Journal of Nuclear Medicine, 41(8), 1400–1408.

    Google Scholar 

  33. Hendel, R. C., Berman, D. S., Cullom, S. J., Follansbee, W., Heller, G. V., Kiat, H., et al. (1999). Multicenter clinical trial to evaluate the efficacy of correction for photon attenuation and scatter in SPECT myocardial perfusion imaging. Circulation, 99(21), 2742–2749.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Jingyan Xu from the Division of Medical Imaging Physics, Department of Radiology at Johns Hopkins University for her assistance in MPH SPECT reconstructions. This work was supported in part by an FDCT Research Grant (079/2011/A3) of Fundo para o Desenvolvimento das Ciencias e da Tecnologia, Macau, and a research Grant from the University of Macau (MRG004/MSP/2013/FST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greta S. P. Mok.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, P., Chen, L., Tsui, B.M.W. et al. Evaluation of Stationary and Semi-stationary Acquisitions from Dual-head Multi-pinhole Collimator for Myocardial Perfusion SPECT. J. Med. Biol. Eng. 36, 675–685 (2016). https://doi.org/10.1007/s40846-016-0169-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-016-0169-1

Keywords

Navigation