Skip to main content
Log in

Effect of Acoustic Properties of Lens Materials on Performance of Capacitive Micromachined Ultrasonic Transducers

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

The acoustic lens in capacitive micromachined ultrasonic transducers (cMUTs) is pivotal not only for elevation focusing but also for insulation from high DC bias voltages. The selection of the lens material is crucial for realizing the full potential of a cMUT; in particular, the acoustic impedance, frequency-dependent attenuation, and shear velocity of the lens materials should be closely considered during the material selection process. By using the finite element method, we determined the effects of these acoustic properties on cMUT performance in terms of signal strength, center frequency, and spectral bandwidth. From the simulation results, it was found that acoustic impedance does not considerably influence cMUT performance if the acoustic impedance value ranges from 1.3 to 1.6 MRayl, which is similar to that of human tissue. However, both frequency-dependent attenuation and shear velocity cause a downshift in center frequency, a reduction in bandwidth, and a decrease in signal strength, which are the main factors leading to deterioration in the spatial resolution and signal-to-noise ratio of an ultrasound image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cha, J. H., & Chang, J. H. (2014). Development of 15 MHz 2-2 piezo-composite ultrasound linear array transducers for ophthalmic imaging. Sensors and Actuators, A, 217, 39–48.

    Article  Google Scholar 

  2. Cha, J. H., Kang, B., Jang, J., & Chang, J. H. (2015). A 15-MHz 1-3 piezocomposite concave array transducer for ophthalmic imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 62, 1994–2004.

    Article  Google Scholar 

  3. Kang, J., Kim, E. K., Kim, G. R., Yoon, C., Song, T. K., & Chang, J. H. (2015). Photoacoustic imaging of breast microcalcifications: A validation study with 3-dimensional ex vivo data and spectrophotometric measurement. Journal of Biophotonics, 8, 71–80.

    Article  Google Scholar 

  4. Kang, J., Chang, J. H., Wilson, B. C., Veileux, I., Bai, Y., DaCosta, R., et al. (2015). A prototype hand-held tri-modal instrument for in vivo ultrasound, photoacoustic, and fluorescence imaging. Review of Scientific Instruments, 86, 034901.

    Article  Google Scholar 

  5. Song, J. H., & Chang, J. H. (2014). An effective pulse sequence for simultaneous HIFU insonation and monitoring. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 61, 1580–1587.

    Article  Google Scholar 

  6. Kim, H., Kang, J., & Chang, J. H. (2014). Thermal therapeutic method for selective treatment of deep-lying tissue by combining laser and high-intensity focused ultrasound energy. Optics Letters, 39, 2806–2809.

    Article  Google Scholar 

  7. Ladabaum, I., Jin, X., Soh, H. T., Atalar, A., & Khuri-Yakub, B. T. (1998). Surface micromachined capacitive ultrasonic transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 45, 678–690.

    Article  Google Scholar 

  8. Oralkan, Ö., Ergun, A. S., Johnson, A. S., Karaman, M., Demirci, U., Kaviani, K., et al. (2002). Capacitive micromachined ultrasonic transducers: Next-generation arrays for acoustic imaging? IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 49, 1596–1610.

    Article  Google Scholar 

  9. Caronti, A., Caliano, G., Carotenuto, R., Savoia, A., Pappalardo, M., Cianci, E., et al. (2006). Capacitive micromachined ultrasonic transducer (CMUT) arrays for medical imaging. Microelectronics Journal, 37, 770–777.

    Article  Google Scholar 

  10. Huang, Y., Ergun, S. E., Hæggström, E., Badi, M. H., & Khuri-Yakub, B. T. (2003). Fabricating capacitive micromachined ultrasonic transducers with wafer-bonding technology. Journal of Microelectromechanical Systems, 12, 128–137.

    Article  Google Scholar 

  11. Khuri-Yakub, B. T., Cheng, C. H., Degertekin, F. L., Ergun, S., Hansen, S., Jin, X. C., et al. (2000). Silicon micromachined ultrasonic transducers. Japanese Journal of Applied Physics, 39, 2883–2887.

    Article  Google Scholar 

  12. Khuri-Yakub, B. T., & Oralkan, Ö. (2011). Capacitive micromachined ultrasonic transducers for medical imaging and therapy. Journal of Micromechanics and Microengineering, 21, 054004.

    Article  Google Scholar 

  13. Caronti, A., Caliano, G., Iula, A., & Pappalardo, M. (2002). An accurate model for capacitive micromachined ultrasonic transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 49, 159–168.

    Article  Google Scholar 

  14. Yaralioglu, G. G., Ergun, A. S., Bayram, B., Hæggström, E., & Khuri-Yakub, B. T. (2003). Calculation and measurement of electromechanical coupling coefficient of capacitive micromachined ultrasonic transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 50, 449–456.

    Article  Google Scholar 

  15. Lohfink, A., & Eccardt, P. C. (2005). Linear and nonlinear equivalent circuit modeling of CMUTs. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52, 2163–2172.

    Article  Google Scholar 

  16. Köymen, H., Senlik, M. N., Atalar, A., & Olcum, S. (2007). Parametric linear modeling of circular cMUT membranes in vacuum. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 54, 1229–1239.

    Article  Google Scholar 

  17. Bayram, B., Kupnik, M., Yaralioglu, G. G., Oralkan, Ö., Ergun, A. S., Lin, D. S., et al. (2007). Finite element modeling and experimental characterization of crosstalk in 1-D CMUT arrays. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 54, 418–430.

    Article  Google Scholar 

  18. Chang, C., Firouzi, K., Park, K. K., Sarioglu, A. F., Nikoozadeh, A., Yoon, H. S., et al. (2014). Acoustic lens for capacitive micromachined ultrasonic transducers. Journal of Micromechanics and Microengineering, 24, 085007.

    Article  Google Scholar 

  19. Savoia, A. S., Caliano, G., & Pappalardo, M. (2012). A CMUT probe for medical ultrasonography: From microfabrication to system integration. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59, 1127–1138.

    Article  Google Scholar 

  20. Lin, D. S., Zhuang, X., Wong, S. H., Kupnik, M., & Khuri-Yakub, B. T. (2010). Encapsulation of capacitive micromachined ultrasonic transducers using viscoelastic polymer. Journal of Microelectromechanical systems, 19, 1341–1351.

    Article  Google Scholar 

  21. Chang, J. H., Raphael, D. T., Zhang, Y. P., & Shung, K. K. (2011). Proof of concept: In vitro measurement of correlation between radiodensity and ultrasound echo response of ovine vertebral bodies. Ultrasonics, 51, 253–257.

    Article  Google Scholar 

  22. Lee, D. Y., Yoo, Y., Song, T. K., & Chang, J. H. (2012). Adaptive dynamic quadrature demodulation with autoregressive spectral estimation in ultrasound imaging. Biomedical Signal Processing and Control, 7(4), 371–378.

    Article  Google Scholar 

  23. DeWall, R. J., Varghese, T., & Madsen, E. L. (2011). Shear wave velocity imaging using transient electrode perturbation: Phantom and ex vivo validation. IEEE Transactions on Medical Imaging, 30, 666–678.

    Article  Google Scholar 

  24. Hosono, Y., Yamashita, Y., & Itsumi, K. (2007). Effects of fine metal oxide particle dopant on the acoustic properties of silicone rubber lens for medical array probe. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 54, 1589–1595.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT, and Future Planning (NRF-2014R1A2A2A03004531). We also appreciate the support from Samsung Medison.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Ho Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.H., Chang, J.H. Effect of Acoustic Properties of Lens Materials on Performance of Capacitive Micromachined Ultrasonic Transducers. J. Med. Biol. Eng. 36, 536–544 (2016). https://doi.org/10.1007/s40846-016-0150-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-016-0150-z

Keywords

Navigation