Skip to main content
Log in

In Vivo Sodium MRI for Mouse Model of Ischemic Stroke at 7 T: Preliminary Results

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Previous studies have used sodium magnetic resonance imaging (MRI) to investigate the increase in tissue sodium concentration that occurs during a stroke by using various animal models of brain ischemia. However, most of these studies have involved rats, cats, or nonhuman primates. Although studies involving mice are relatively scant, mice have become the principal animal model for studying many human diseases, particularly in the field of genetics. Accordingly, this study employed sodium MRI to monitor changes in the intensity of sodium signals in a mouse model of ischemic stroke. The experiments were conducted using a 7-T MRI system, and a commercial double-tuned sodium/proton transmit-receive surface coil was used to capture the sodium and proton signal images. Sodium MRI was performed using a fast low-angle shot pulse sequence. The mice underwent middle cerebral artery occlusion to induce focal brain ischemia 48 h before the MRI scans were performed. The signal intensity of the sodium image was determined for a region of interest (ROI) in the ischemic area, and an ROI contralateral to this area. The average signal intensity in the sodium images of the mouse brains exhibited a 2.51-fold increase and a standard deviation was 0.93. The results of this study demonstrate the feasibility of using a 7-T MRI system to perform sodium MRI of a mouse model of ischemic stroke. The sodium signal intensity of the mouse brain revealed a substantial increase in sodium levels in the ischemic area compared with that in the contralateral brain hemisphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kanekar, S. G., Zacharia, T., & Roller, R. (2012). Imaging of stroke: Part 2, pathophysiology at the molecular and cellular levels and corresponding imaging changes. American Journal of Roentgenology, 198, 63–74.

    Article  Google Scholar 

  2. Warren, D. J., Musson, R., Connolly, D. J., Griffiths, P. D., & Hoggard, N. (2010). Imaging in acute ischaemic stroke: Essential for modern stroke care. Postgraduate Medical Journal, 86, 409–418.

    Article  Google Scholar 

  3. Wetterling, F., Gallagher, L., Macrae, I. M., Junge, S., & Fagan, A. J. (2012). Regional and temporal variations in tissue sodium concentration during the acute stroke phase. Magnetic Resonance in Medicine, 67, 740–749.

    Article  Google Scholar 

  4. Liu, L. F., Yeh, C. K., Chen, C. H., Wong, T. W., & Chen, J. J. J. (2008). Measurement of cerebral blood flow and oxygen saturation using laser doppler flowmetry and near infrared spectroscopy in ischemic stroke rats. Journal of Medical and Biological Engineering, 28, 101–105.

    Google Scholar 

  5. Boada, F. E., Qian, Y., Nemoto, E., Jovin, T., Jungreis, C., Jones, S. C., et al. (2012). Sodium MRI and the assessment of irreversible tissue damage during hyper-acute stroke. Translational Stroke Research, 3, 236–245.

    Article  Google Scholar 

  6. Augath, M., Heiler, P., Kirsch, S., & Schad, L. R. (2009). In vivo 39K, 23Na and 1H MR imaging using a triple resonant RF coil setup. Journal of Magnetic Resonance, 200, 134–136.

    Article  Google Scholar 

  7. Konstandin, S., & Nagel, A. M. (2013). Measurement techniques for magnetic resonance imaging of fast relaxing nuclei. Magnetic Resonance Materials in Physics, Biology and Medicine, 27, 5–19.

    Article  Google Scholar 

  8. Ouwerkerk, R. (2011). Sodium MRI. Methods in Molecular Biology, 711, 175–201.

    Article  Google Scholar 

  9. Ouwerkerk, R. (2007). Sodium magnetic resonance imaging: From research to clinical use. Journal of the American College of Radiology, 4, 739–741.

    Article  Google Scholar 

  10. Parrish, T. B., Fieno, D. S., Fitzgerald, S. W., & Judd, R. M. (1997). Theoretical basis for sodium and potassium MRI of the human heart at 1.5 T. Magnetic Resonance in Medicine, 38, 653–661.

    Article  Google Scholar 

  11. Schepkin, V. D., Brey, W. W., Gor’kov, P. L., & Grant, S. C. (2010). Initial in vivo rodent sodium and proton MR imaging at 21.1 T. Magnetic Resonance Imaging, 28, 400–407.

    Article  Google Scholar 

  12. Madelin, G., Jerschow, A., & Regatte, R. R. (2012). Sodium relaxation times in the knee joint in vivo at 7T. NMR in Biomedicine, 25, 530–537.

    Article  Google Scholar 

  13. Neuberger, T., Gulani, V., & Webb, A. (2007). Sodium renal imaging in mice at high magnetic fields. Magnetic Resonance in Medicine, 58, 1067–1071.

    Article  Google Scholar 

  14. Ouwerkerk, R., Jacobs, M. A., Macura, K. J., Wolff, A. C., Stearns, V., Mezban, S. D., et al. (2007). Elevated tissue sodium concentration in malignant breast lesions detected with non-invasive 23Na MRI. Breast Cancer Research and Treatment, 106, 151–160.

    Article  Google Scholar 

  15. Ouwerkerk, R., Bleich, K. B., Gillen, J. S., Pomper, M. G., & Bottomley, P. A. (2003). Tissue sodium concentration in human brain tumors as measured with 23Na MR imaging. Radiology, 227, 529–537.

    Article  Google Scholar 

  16. Ouwerkerk, R., Bottomley, P. A., Solaiyappan, M., Spooner, A. E., Tomaselli, G. F., Wu, K. C., & Weiss, R. G. (2008). Tissue sodium concentration in myocardial infarction in humans: A quantitative 23Na MR imaging study. Radiology, 248, 88–96.

    Article  Google Scholar 

  17. Constantinides, C. D., Kraitchman, D. L., O’Brien, K. O., Boada, F. E., Gillen, J., & Bottomley, P. A. (2001). Noninvasive quantification of total sodium concentrations in acute reperfused myocardial infarction using 23Na MRI. Magnetic Resonance in Medicine, 46, 1144–1151.

    Article  Google Scholar 

  18. Thulborn, K. R., Davis, D., Snyder, J., Yonas, H., & Kassam, A. (2005). Sodium MR imaging of acute and subacute stroke for assessment of tissue viability. Neuroimaging Clinics of North America, 15, 639–653.

    Article  Google Scholar 

  19. Moseley, M. E., Chew, W. M., Nishimura, M. C., Richards, T. L., Murphy-Boesch, J., Young, G. B., et al. (1985). In vivo sodium-23 magnetic resonance surface coil imaging: Observing experimental cerebral ischemia in the rat. Magnetic Resonance Imaging, 3, 383–387.

    Article  Google Scholar 

  20. Mellon, E. A., Pilkinton, D. T., Clark, C. M., Elliott, M. A., Witschey, W. R, 2nd, Borthakur, A., & Reddy, R. (2009). Sodium MR imaging detection of mild Alzheimer disease: Preliminary study. American Journal of Neuroradiology, 30, 978–984.

    Article  Google Scholar 

  21. Kline, R. P., Wu, E. X., Petrylak, D. P., Szabolcs, M., Alderson, P. O., Weisfeldt, M. L., et al. (2000). Rapid in vivo monitoring of chemotherapeutic response using weighted sodium magnetic resonance imaging. Clinical Cancer Research, 6, 2146–2156.

    Google Scholar 

  22. Babsky, A. M., Zhang, H., Hekmatyar, S. K., Hutchins, G. D., & Bansal, N. (2007). Monitoring chemotherapeutic response in RIF-1 tumors by single-quantum and triple-quantum-filtered 23Na MRI, 1H diffusion-weighted MRI and PET imaging. Magnetic Resonance Imaging, 25, 1015–1023.

    Article  Google Scholar 

  23. Babsky, A. M., Hekmatyar, S. K., Zhang, H., Solomon, J. L., & Bansal, N. (2005). Application of 23Na MRI to monitor chemotherapeutic response in RIF-1 tumors. Neoplasia, 7, 658–666.

    Article  Google Scholar 

  24. Neuberger, T., Greiser, A., Nahrendorf, M., Jakob, P. M., Faber, C., & Webb, A. G. (2004). 23Na microscopy of the mouse heart in vivo using density-weighted chemical shift imaging. Magnetic Resonance Materials in Physics, Biology and Medicine, 17, 196–200.

    Article  Google Scholar 

  25. Near, J., & Bartha, R. (2010). Quantitative sodium MRI of the mouse prostate. Magnetic Resonance in Medicine, 63, 822–827.

    Article  Google Scholar 

  26. Heiler, P. M., Langhauser, F. L., Wetterling, F., Ansar, S., Grudzenski, S., Konstandin, S., et al. (2011). Chemical shift sodium imaging in a mouse model of thromboembolic stroke at 9.4 T. Journal of Magnetic Resonance Imaging, 34, 935–940.

    Article  Google Scholar 

  27. Yushmanov, V. E., Kharlamov, A., Yanovski, B., LaVerde, G., Boada, F. E., & Jones, S. C. (2009). Inhomogeneous sodium accumulation in the ischemic core in rat focal cerebral ischemia by 23Na MRI. Journal of Magnetic Resonance Imaging, 30, 18–24.

    Article  Google Scholar 

  28. Jones, S. C., Kharlamov, A., Yanovski, B., Kim, D. K., Easley, K. A., Yushmanov, V. E., et al. (2006). Stroke onset time using sodium MRI in rat focal cerebral ischemia. Stroke, 37, 883–888.

    Article  Google Scholar 

  29. Thulborn, K. R., Gindin, T. S., Davis, D., & Erb, P. (1999). Comprehensive MR imaging protocol for stroke management: Tissue sodium concentration as a measure of tissue viability in nonhuman primate studies and in clinical studies. Radiology, 213, 156–166.

    Article  Google Scholar 

  30. Bartha, R., Lee, T. Y., Hogan, M. J., Hughes, S., Barberi, E., Rajakumar, N., & Menon, R. S. (2004). Sodium T2*-weighted MR imaging of acute focal cerebral ischemia in rabbits. Magnetic Resonance Imaging, 22, 983–991.

    Article  Google Scholar 

  31. LaVerde, G. C., Jungreis, C. A., Nemoto, E., & Boada, F. E. (2009). Sodium time course using 23Na MRI in reversible focal brain ischemia in the monkey. Journal of Magnetic Resonance Imaging, 30, 219–223.

    Article  Google Scholar 

  32. Kirsch, S., Augath, M., Seiffge, D., Schilling, L., & Schad, L. R. (2010). In vivo chlorine-35, sodium-23 and proton magnetic resonance imaging of the rat brain. NMR in Biomedicine, 23, 592–600.

    Article  Google Scholar 

  33. Wetterling, F., Tabbert, M., Junge, S., Gallagher, L., Macrae, I. M., & Fagan, A. J. (2010). A double-tuned 1H/23Na dual resonator system for tissue sodium concentration measurements in the rat brain via Na-MRI. Physics in Medicine & Biology, 55, 7681–7695.

    Article  Google Scholar 

  34. Tsang, A., Stobbe, R. W., Asdaghi, N., Hussain, M. S., Bhagat, Y. A., Beaulieu, C., et al. (2011). Relationship between sodium intensity and perfusion deficits in acute ischemic stroke. Journal of Magnetic Resonance Imaging, 33, 41–47.

    Article  Google Scholar 

  35. Boada, F. E., LaVerde, G., Jungreis, C., Nemoto, E., Tanase, C., & Hancu, I. (2005). Loss of cell ion homeostasis and cell viability in the brain: What sodium MRI can tell us. Current Topics in Developmental Biology, 70, 77–101.

    Article  Google Scholar 

  36. Wetterling, F., Hogler, M., Molkenthin, U., Junge, S., Gallagher, L., Mhairi Macrae, I., & Fagan, A. J. (2012). The design of a double-tuned two-port surface resonator and its application to in vivo hydrogen- and sodium-MRI. Journal of Magnetic Resonance, 217, 10–18.

    Article  Google Scholar 

  37. Durukan, A., & Tatlisumak, T. (2009). Ischemic stroke in mice and rats. Methods in Molecular Biology, 573, 95–114.

    Article  Google Scholar 

  38. Chen, J. M., Liu, Y. A., Jung, Y. L., Chan, Y. K., Horng, J. T., Syu, J. H., & Tsai, M. H. (2013). Analysis and construction of genetic network for mice brain microarray datasets. Journal of Medical and Biological Engineering, 33, 400–405.

    Article  Google Scholar 

  39. Madelin, G., Lee, J. S., Regatte, R. R., & Jerschow, A. (2014). Sodium MRI: Methods and applications. Progress in Nuclear Magnetic Resonance Spectroscopy, 79, 14–47.

    Article  Google Scholar 

  40. Christensen, J. D., Barrere, B. J., Boada, F. E., Vevea, J. M., & Thulborn, K. R. (1996). Quantitative tissue sodium concentration mapping of normal rat brain. Magnetic Resonance in Medicine, 36, 83–89.

    Article  Google Scholar 

  41. Yushmanov, V. E., Yanovski, B., Kharlamov, A., LaVerde, G., Boada, F. E., & Jones, S. C. (2009). Sodium mapping in focal cerebral ischemia in the rat by quantitative 23Na MRI. Journal of Magnetic Resonance Imaging, 29, 962–966.

    Article  Google Scholar 

  42. Lin, S. P., Song, S. K., Miller, J. P., Ackerman, J. J., & Neil, J. J. (2001). Direct, longitudinal comparison of 1H and 23Na MRI after transient focal cerebral ischemia. Stroke, 32, 925–932.

    Article  Google Scholar 

  43. Pabst, T., Sandstede, J., Beer, M., Kenn, W., Neubauer, S., & Hahn, D. (2003). Evaluation of sodium T1 relaxation times in human heart. Journal of Magnetic Resonance Imaging, 17, 726–729.

    Article  Google Scholar 

  44. Robson, M. D., Gatehouse, P. D., Bydder, M., & Bydder, G. M. (2003). Magnetic resonance: An introduction to ultrashort TE (UTE) imaging. Journal of Computer Assisted Tomography, 27, 825–846.

    Article  Google Scholar 

  45. Tyler, D. J., Robson, M. D., Henkelman, R. M., Young, I. R., & Bydder, G. M. (2007). Magnetic resonance imaging with ultrashort TE (UTE) pulse sequences: Technical considerations. Journal of Magnetic Resonance Imaging, 25, 279–289.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Functional Neuroscience Lab at Chang Gung University, Taiwan, for their support with the animal surgery, the 7-T Animal MRI Core Lab at the Neurobiology and Cognitive Science Center, Taiwan, for providing technical support and access to their facilities, and the Instrumentation Center for MRI experiments at National Taiwan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen-Fang Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, KC., Yu, JF., Lee, YS. et al. In Vivo Sodium MRI for Mouse Model of Ischemic Stroke at 7 T: Preliminary Results. J. Med. Biol. Eng. 35, 643–650 (2015). https://doi.org/10.1007/s40846-015-0072-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-015-0072-1

Keywords

Navigation