Skip to main content

Advertisement

Log in

Mud2Metal: Lessons Learned on the Path for Complete Utilization of Bauxite Residue Through Industrial Symbiosis

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

A new concept for a holistic exploitation of the bauxite residue (BR) is presented, where a multitude of niche and bulk application products are produced, leading to a near zero-waste, financially viable, and environmentally benign process. Based on the combination of recent research results, the “Mud2Metal” conceptual flow sheet was developed in order to produce added value products rationalizing BR sustainable valorization. The Mud2Metal flow sheet is analyzed technologically, environmentally, and economically, addressing the challenges and the effects of each processing step, for the case of the Greek BR. The Mud2Metal flow sheet is focused on the selective removal of rare earth elements, the subsequent production of pig iron for the iron and steel industry, and the valorization of the residual slag’s engineered mineral matrix into a variety of building materials. Based on further technological innovation and flow sheet integration/optimization, the plant operation could become economically profitable for the alumina industry, environmentally benign, and socially acceptable; in one word: sustainable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Balomenos E, Panias D, Paspaliaris I (2011) Energy and exergy analysis of the primary aluminum production processes: a review on current and future sustainability. Miner Process Extr Metall Rev 32(2):69–89

    Article  CAS  Google Scholar 

  2. Klauber C, Gräfe M, Power G (2011) Bauxite residue issues: II. Options for residue utilization. Hydrometallurgy 108(1–2):11–32

    Article  CAS  Google Scholar 

  3. Liu Z, Li H (2015) Metallurgical process for valuable elements recovery from red mud—a review. Hydrometallurgy 155:29–43

    Article  CAS  Google Scholar 

  4. Borra CR et al (2016) Recovery of rare earths and other valuable metals from bauxite residue (red mud): a review. J Sustain Metall. doi:10.1007/s40831-016-0068-2

    Google Scholar 

  5. Pontikes Y, Angelopoulos GN (2013) Bauxite residue in cement and cementitious applications: current status and a possible way forward. Resour Conserv Recycl 73:53–63

    Article  Google Scholar 

  6. Vangelatos I, Angelopoulos GN, Boufounos D (2009) Utilization of ferroalumina as raw material in the production of ordinary Portland cement. J Hazard Mater 168(1):473–478

    Article  CAS  Google Scholar 

  7. Evans K (2016) The history, challenges, and new developments in the management and use of bauxite residue. J Sustain Metall. doi:10.1007/s40831-016-0060-x

    Google Scholar 

  8. Pontikes Y, Boufounos D, Angelopoulos GN (2011) Case studies for the valorisation of Bayer’s process bauxite residue: aggregates, ceramics, glass-ceramics, cement and catalysis. In 2nd international slag valorisation symposium, Leuven

  9. Wang W, Pranolo Y, Cheng CY (2011) Metallurgical processes for scandium recovery from various resources: a review. Hydrometallurgy 108(1–2):100–108

    Article  CAS  Google Scholar 

  10. Krishnamurthy N, Gupta CK (2015) Resource processing, in extractive metallurgy of rare earths. CRC Press, Boca Raton, pp 235–332

    Book  Google Scholar 

  11. Ochsenkühn‐Petropoulou M, Tsakanika LA, Lymperopoulou T (2014) Process control of an innovative method for the recovery and separation of rare earths from red mud by different analytical techniques. In: ERES 2014—first European rare earth resources conference, Milos, Greece, 4–7 September 2014

  12. Balomnenos E et al (2014) The ENEXAL bauxite residue treatment process: industrial scale pilot plant results. Light metals 2014. Wiley, Amsterdam, pp 141–147

    Chapter  Google Scholar 

  13. Binnemans K et al (2015) Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review. J Clean Prod 99:17–38

    Article  CAS  Google Scholar 

  14. Goodenough KM et al (2016) Europe’s rare earth element resource potential: an overview of REE metallogenetic provinces and their geodynamic setting. Ore Geol Rev 72:838–856

    Article  Google Scholar 

  15. Petrakova O, Klimentenok G, Panov A, Gorbachev S (2014) Application of modern methods for red mud processing to produce rare earth elements. In: Proceedings of the 1st European rare earth resources conference (ERES), Milos, pp 221–229

  16. Binnemans K et al (2013) Recycling of rare earths: a critical review. J Clean Prod 51:1–22

    Article  CAS  Google Scholar 

  17. ERECON (2015) Strengthening the European rare earths supply chain: challenges and policy options

  18. European Commission (2014) Report of the Ad hoc working group on defining critical raw materials

  19. Borra CR et al (2015) Leaching of rare earths from bauxite residue (red mud). Miner Eng 76:20–27

    Article  CAS  Google Scholar 

  20. Davris P et al (2016) Leaching rare earth elements from bauxite residue using Brønsted acidic ionic liquids A2 (Chap. 12). In: De Lima IB, Leal Filho W (eds) Rare earths industry. Elsevier, Amsterdam, pp 183–197

    Chapter  Google Scholar 

  21. Ochsenkühn-Petropulu M, Lyberopulu T, Parissakis G (1994) Direct determination of landthanides, yttrium and scandium in bauxites and red mud from alumina production. Anal Chim Acta 296(3):305–313

    Article  Google Scholar 

  22. U.S. Geological Survey (2016) Mineral commodity summaries. U.S. Geological Survey, Reston

  23. Schlinkert D, van den Boogaart KG (2015) The development of the market for rare earth elements: insights from economic theory. Resour Policy 46:272–280

    Article  Google Scholar 

  24. Golev A et al (2014) Rare earths supply chains: current status, constraints and opportunities. Resour Policy 41:52–59

    Article  Google Scholar 

  25. www.institut-seltene-erden.org. Accessed on 1 Sept 2016

  26. Ahmad Z (2003) The properties and application of scandium-reinforced aluminum. JOM 55(2):35–39

    Article  CAS  Google Scholar 

  27. Boudghene Stambouli A, Traversa E (2002) Fuel cells, an alternative to standard sources of energy. Renew Sustain Energy Rev 6(3):295–304

    Article  Google Scholar 

  28. Ciacchi FT, Badwal SPS, Drennan J (1991) The system Y2O3–Sc2O3–ZrO2: phase characterisation by XRD, TEM and optical microscopy. J Eur Ceram Soc 7(3):185–195

    Article  CAS  Google Scholar 

  29. Borra CR et al (2016) Smelting of bauxite residue (red mud) in view of iron and selective rare earths recovery. J Sustain Metall 2(1):28–37

    Article  Google Scholar 

  30. Ochsenkühn-Petropoulou MT et al (2002) Pilot-plant investigation of the leaching process for the recovery of scandium from red mud. Ind Eng Chem Res 41(23):5794–5801

    Article  Google Scholar 

  31. Ochsenkühn-Petropulu M et al (1996) Recovery of lanthanides and yttrium from red mud by selective leaching. Anal Chim Acta 319(1–2):249–254

    Article  Google Scholar 

  32. Smirnov DI, Molchanova TV (1997) The investigation of sulphuric acid sorption recovery of scandium and uranium from the red mud of alumina production. Hydrometallurgy 45(3):249–259

    Article  CAS  Google Scholar 

  33. Wang W, Cheng CY (2011) Separation and purification of scandium by solvent extraction and related technologies: a review. J Chem Technol Biotechnol 86(10):1237–1246

    Article  CAS  Google Scholar 

  34. Wang W, Pranolo Y, Cheng CY (2013) Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA. Sep Purif Technol 108:96–102

    Article  CAS  Google Scholar 

  35. Fulford GD, Lever G, Sato T (1991) Recovery of rare earth elements from sulphurous acid solution by solvent extraction. US patent 5015447 A

  36. Yatsenko SP, Pyagai IN (2010) Red mud pulp carbonization with scandium extraction during alumina production. Theor Found Chem Eng 44(4):563–568

    Article  CAS  Google Scholar 

  37. Qu Y, Lian B (2013) Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10. Bioresour Technol 136:16–23

    Article  CAS  Google Scholar 

  38. Davris P et al (2016) Selective leaching of rare earth elements from bauxite residue (red mud), using a functionalized hydrophobic ionic liquid. Hydrometallurgy 164:125–135

    Article  CAS  Google Scholar 

  39. Ochsenkühn-Petropulu M, Lyberopulu T, Parissakis G (1995) Selective separation and determination of scandium from yttrium and lanthanides in red mud by a combined ion exchange/solvent extraction method. Anal Chim Acta 315(1–2):231–237

    Article  Google Scholar 

  40. Balomenos E et al (2013) Resource-efficient and economically viable pyrometallurgical processing of industrial ferrous by-products. Waste Biomass Valoriz 5(3):333–342

    Article  Google Scholar 

  41. Paramguru RK, Rath PC, Misra VN (2004) Trends in red mud utilization—a review. Miner Process Extr Metall Rev 26(1):1–29

    Article  Google Scholar 

  42. Kumar S, Kumar R, Bandopadhyay A (2006) Innovative methodologies for the utilisation of wastes from metallurgical and allied industries. Resour Conserv Recycl 48(4):301–314

    Article  Google Scholar 

  43. Liu Y, Naidu R (2014) Hidden values in bauxite residue (red mud): recovery of metals. Waste Manag 34(12):2662–2673

    Article  CAS  Google Scholar 

  44. Liu W, Yang J, Xiao B (2009) Application of Bayer red mud for iron recovery and building material production from alumosilicate residues. J Hazard Mater 161(1):474–478

    Article  CAS  Google Scholar 

  45. Xenidis A et al (2011) Reductive smelting of Greek bauxite residues for iron production. In: Lindsay SJ (ed) Light Metals 2011. Wiley, Hoboken, pp 113–117

    Google Scholar 

  46. Zhu D-Q et al (2012) Recovery of iron from high-iron red mud by reduction roasting with adding sodium salt. J Iron Steel Res Int 19(8):1–5

    Article  Google Scholar 

  47. Jayshankar K, Mukherjee PS, Bhoi B, Mishra CR (2013) Production of pig iron and Portland slag cement from red mud by application of Novel Thermal Plasma Technique, in Technical proceedings of IBAAS-CHALIECO 2013 international symposium. Nanning, Guangxi

  48. Scrivener KL, Cabiron J-L, Letourneux R (1999) High-performance concretes from calcium aluminate cements. Cem Concr Res 29(8):1215–1223

    Article  CAS  Google Scholar 

  49. Panias D, Giannopoulou I, Boufounos D (2014) Valorization of alumina red mud for production of geopolymeric bricks and tiles. In: Grandfield J (ed) Light Metals 2014. Wiley, Hoboken, pp 155–159

    Google Scholar 

  50. Papadopoulos AM (2005) State of the art in thermal insulation materials and aims for future developments. Energy Build 37(1):77–86

    Article  Google Scholar 

  51. Provis JL, van Deventer JSJ (2009) Geopolymers, structures, processing, properties and industrial applications, 1st edn. Woodhead Publishing Ltd, Abingdon

    Google Scholar 

  52. He J et al (2013) Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cement Concr Compos 37:108–118

    Article  CAS  Google Scholar 

  53. Ke X et al (2015) One-part geopolymers based on thermally treated red mud/NAOH blends. J Am Ceram Soc 98(1):5–11

    Article  CAS  Google Scholar 

  54. Ye N et al (2014) Synthesis and characterization of geopolymer from Bayer red mud with thermal pretreatment. J Am Ceram Soc 97(5):1652–1660

    Article  CAS  Google Scholar 

  55. Hertel T, Blanpain B, Pontikes Y (2016) A proposal for a 100% use of bauxite residue towards inorganic polymer mortar. J Sustain Metall. doi:10.1007/s40831-016-0080-6

    Google Scholar 

  56. van Riessen A et al (2013) Bayer-geopolymers: an exploration of synergy between the alumina and geopolymer industries. Cement Concr Compos 41:29–33

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Community’s Seventh Framework Programme ([FP7/2007‐2013]) under Grant Agreements No. 309373 (EURARE www.eurare.eu) and No. 249710 (ENEXAL www.labmet.ntua.gr/enexal). This publication reflects only the authors’ view, exempting the Community from any liability.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efthymios Balomenos.

Additional information

The contributing editor for this article was Bernd Friedrich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balomenos, E., Davris, P., Pontikes, Y. et al. Mud2Metal: Lessons Learned on the Path for Complete Utilization of Bauxite Residue Through Industrial Symbiosis. J. Sustain. Metall. 3, 551–560 (2017). https://doi.org/10.1007/s40831-016-0110-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-016-0110-4

Keywords

Navigation