Skip to main content
Log in

Development of a Global Kinetic Model for a Commercial Lean NOx Trap Automotive Catalyst Based on Laboratory Measurements

  • Special Issue: 2016 CLEERS April 6-8, Ann Arbor, MI, USA
  • Published:
Emission Control Science and Technology Aims and scope Submit manuscript

Abstract

We summarize a global kinetic model for a commercial automotive Lean NOx Trap (LNT) catalyst derived from laboratory flow reactor measurements at Oak Ridge National Laboratory (ORNL). The experimental measurements were made according to a modified version of a publicly shared protocol developed for characterizing the dynamic responses of LNT catalysts over a temperature range of 150–550 °C under lean-rich cycling with CO, H2, and C3H6 as the reductants. The resulting model includes three NOx storage sites. The present model also includes reactions for oxygen storage, water gas shift, steam reforming, NOx reduction, and N2O and NH3 generation. When implemented in 1D integral reactor simulations of long-period cycling, the model was found to accurately predict the observed outlet concentrations of CO, H2, C3H6, NO, NO2, NH3, and N2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

cpsi:

Cells per square inch

LNT:

Lean NOx Trap

NSR:

NOx storage reduction

OSC:

Oxygen storage capacity

PGM:

Platinum group metals

WGS:

Water gas shift

a j :

Active site density of reaction j \( \left[\frac{\mathrm{m}\mathrm{ole}.\mathrm{site}}{{\mathrm{m}}^3}\right] \)

A :

Pre-exponent multiplier

C :

Concentration expression \( \left[\frac{\mathrm{m}\mathrm{ol}}{{\mathrm{m}}^3}\right] \)

C pg :

Heat capacity of gas \( \left[\frac{\mathrm{J}}{\mathrm{kg}.\mathrm{K}}\right] \)

D i ,m :

Binary diffusion coefficient of trace species i in the mixture \( \left[\frac{{\mathrm{m}}^2}{\mathrm{s}}\right] \)

D h :

Hydraulic diameter of channel [m]

E ai :

Activation energy of reaction i \( \left[\frac{\mathrm{J}}{\mathrm{mol}}\right] \)

f :

Friction factor

f sb :

Solid fraction of substrate

G :

Inhibition function

h :

Heat transfer coefficient \( \left[\frac{\mathrm{J}}{{\mathrm{m}}^2.\mathrm{s}.\mathrm{K}}\right] \)

h x :

External heat transfer coefficient \( \left[\frac{\mathrm{J}}{{\mathrm{m}}^2.\mathrm{s}.\mathrm{K}}\right] \)

k i :

Rate constant of reaction i

k m ,i :

Mass transfer coefficient for trace species i \( \left[\frac{\mathrm{kg}}{{\mathrm{m}}^2.\mathrm{s}}\right] \)

K eq :

Equilibrium constant

n :

Number of moles [mol]

\( \overset{.}{n} \) :

Molar flow rate \( \left[\frac{\mathrm{mol}}{\mathrm{s}}\right] \)

Nu :

Nusselt number for heat transfer

P :

Power input \( \left[\frac{\mathrm{J}}{\mathrm{s}}\right] \)

p :

Pressure [Pa]

\( \overline{R} \) :

Gas constant \( \left[\frac{\mathrm{J}}{\mathrm{mol}.\mathrm{K}}\right] \)

r j :

Reaction rate for reaction j \( \left[\frac{\mathrm{mol}}{{\mathrm{mol}\mathrm{e}}_{\mathrm{site}}.\mathrm{s}}\right] \)

s ij :

Stoichiometric coefficient of species i for reaction j

S :

Surface area per reactor volume \( \left[\frac{1}{\mathrm{m}}\right] \)

S x :

External surface area per reactor volume \( \left[\frac{1}{\mathrm{m}}\right] \)

t :

Time [s]

t end :

Time at the end of simulation [s]

T g :

Temperature of bulk gas in reactor channels [K]

T s :

Temperature of gas at catalyst surface [K]

T x :

External temperature [K]

v :

Interstitial velocity \( \left[\frac{\mathrm{m}}{\mathrm{s}}\right] \)

V :

Reactor volume [m3]

z :

Axial position [m]

δ :

Washcoat thickness [m]

H j :

Enthalpy of reaction j \( \left[\frac{\mathrm{J}}{\mathrm{mol}}\right] \)

ε :

Void fraction of reactor

\( \overrightarrow{\theta},\ {\theta}_k \) :

Vector and component, respectively, of surface coverage

θ eq :

Equilibrium surface coverage

λ :

Thermal conductivity of bulk \( \left[\frac{\mathrm{J}}{\mathrm{mol}.\mathrm{s}.\mathrm{K}}\right] \)

λ sb :

Thermal conductivity of substrate \( \left[\frac{\mathrm{J}}{\mathrm{mol}.\mathrm{s}.\mathrm{K}}\right] \)

ρ g :

Density of bulk gas in reactor channels \( \left[\frac{\mathrm{kg}}{{\mathrm{m}}^3}\right] \)

σ kj :

Stoichiometric coefficient for coverage k in reaction j

Ψ s :

Effective heat capacity of reactor \( \left[\frac{\mathrm{J}}{{\mathrm{m}}^3.\mathrm{K}}\right] \)

ϖ g ϖ g,i :

Vector and component, respectively, of mass fractions in the bulk gas

ϖ g,i :

Component of mass fractions in the washcoat

References

  1. Forzatti, P., Lietti, L., Gabrielli, N.: A kinetic study of the reduction of NOx stored on Pt-Ba/Al2O3 catalyst. Appl. Catal. B Environ. 99(1–2), 145–155 (2010). doi:10.1016/j.apcatb.2010.06.011

    Article  Google Scholar 

  2. Epling, W.S., Campbell, L.E., Yezerets, A., Currier, N.W., et al.: Overview of the fundamental reactions and degradation mechanisms of NOx storage/reduction catalysts. Catal. Rev. Sci. Eng. 46(2), 163–245 (2004). doi:10.1081/CR-200031932

    Article  Google Scholar 

  3. Liu, Z., Woo, S.I.: Recent advances in catalytic DeNOX science and technology. Catal. Rev. Sci. Eng. 48(1), 43–89 (2006). doi:10.1080/01614940500439891

    Article  Google Scholar 

  4. Forzatti, P., Lietti, L., Nova, I., Tronconi, E.: Diesel NOx aftertreatment catalytic technologies: analogies in LNT and SCR catalytic chemistry. Catal. Today 151(3–4), 202–211 (2010). doi:10.1016/j.cattod.2010.02.025

    Article  Google Scholar 

  5. Nova, I., Castoldi, L., Lietti, L., Tronconi, E., et al.: The Pt-Ba interaction in lean NOx trap systems. SAE Technical Paper. (2005). doi: 10.4271/2005-01-1085

  6. Tonkyn, R.G., Disselkamp, R.S., Peden, C.H.F.: Nitrogen release from a NOx storage and reduction catalyst. Catal. Today 114(1), 94–101 (2006). doi:10.1016/j.cattod.2006.02.005

    Article  Google Scholar 

  7. Xu, J., Harold, M.P., Balakotaiah, V.: Modeling the effects of Pt loading on NOx storage on Pt/BaO/Al2O3 catalysts. Appl. Catal. B Environ. 104(3–4), 305–315 (2011). doi:10.1016/j.apcatb.2011.03.014

    Article  Google Scholar 

  8. Daw, C.S., Chakravart, K., Lenox, K.E.: A simple model for lean NOx adsorber catalysts. CLEERS (2002)

  9. Nova, I., Lietti, L., Forzatti, P., Prinetto, F., et al.: Experimental investigation of the reduction of NOx species by CO and H2 over Pt–Ba/Al2O3 lean NOx trap systems. Catal. Today 151(3–4), 330–337 (2010). doi:10.1016/j.cattod.2010.02.075

    Article  Google Scholar 

  10. Morandi, S., Ghiotti, G., Castoldi, L., Lietti, L., et al.: Reduction by CO of NOx species stored onto Pt–K/Al2O3 and Pt–Ba/Al2O3 lean NOx traps. Catal. Today 176(1), 399–403 (2011). doi:10.1016/j.cattod.2010.11.024

    Article  Google Scholar 

  11. AL-Harbi, M., Epling, W.S.: The effects of regeneration-phase CO and/or H2 amount on the performance of a NOX storage/reduction catalyst. Appl. Catal. B Environ. 89(3–4), 315–325 (2009). doi:10.1016/j.apcatb.2008.12.010

    Article  Google Scholar 

  12. Masdrag, L., Courtois, X., Can, F., Royer, S., et al.: Understanding the role of C3H6, CO and H2 on efficiency and selectivity of NOx storage reduction (NSR) process. Catal. Today 189(1), 70–76 (2012). doi:10.1016/j.cattod.2012.03.053

    Article  Google Scholar 

  13. Nova, I., Lietti, L., Forzatti, P.: Mechanistic aspects of the reduction of stored NOx over Pt–Ba/Al2O3 lean NOx trap systems. Catal. Today 136(1–2), 128–135 (2008). doi:10.1016/j.cattod.2008.01.006

    Article  Google Scholar 

  14. CLEERS Reports: http://www.cleers.org/reports.php (2015)

  15. CLEERS Protocols: http://www.cleers.org/protocols/1113847174LNTmap_7_18_05.pdf (2005)

  16. Pihl, J.A., Lewis, J.A., Toops, T.J., Parks II, J.E.: Lean NOx trap chemistry under lean-gasoline exhaust conditions: impact of high NOx concentrations and high temperature. Top. Catal. 56(1), 89–93 (2013). doi:10.1007/s11244-013-9934-3,

    Article  Google Scholar 

  17. GT-SUITE Engine Performance Application Manual: Gamma Technologies (2014)

  18. Fulller, E., Schettler, P., Giddings, J.: A new method for prediction of binary gas-phase diffusion coefficients. Ind. Eng. Chem. 58, 19–27 (1966). doi:10.1021/ie50677a007

    Google Scholar 

  19. Courtois, X., Bion, N., Marécot, P., Duprez, D.: Chapter 8 The role of cerium-based oxides used as oxygen storage materials in DeNOx catalysis, In: Granger, P., Pârvulescu V.I. (eds.) Studies in Surface Science and Catalysis, Elsevier, 171, pp. 235–259 (2007). doi:10.1016/S0167-2991(07)80209-6

  20. Leistner, K., Nicolle, A., Costa, P.: Modelling the kinetics of NO oxidation and NOx storage over platinum, ceria and ceria zirconia. Appl. Catal. B Environ. 111–112, 415–423 (2012). doi:10.1016/j.apcatb.2011.10.029

    Article  Google Scholar 

  21. Iwata, N., Suzuki, Y., Kato, H., Takeuchi, M., Sugiura, A.: Analysis of potassium storage components in NOx catalysts application of analytical techniques and DFT computations to catalytic analysis. SAE Technical Paper (2004). doi:10.4271/2004-01-1494

  22. Liu, Y., Meng, M., Zou, Z., Li, X., Zha, Y.: In situ DRIFTS investigation on the NOx storage mechanisms over Pt/K/TiO2–ZrO2 catalyst. Catal. Commun. 10(2), 173–177 (2008). doi:10.1016/j.catcom.2008.08.014

    Article  Google Scholar 

  23. Kromer, B., Cao, L., Cumaranatunge, L., Mulla, S., Ratts, J., Yezerets, A., Currier, N., Ribeiro, F., Delgass, W., Caruthers, J.: Modeling of NO oxidation and NOx storage on Pt/BaO/Al2O3 NOx traps. Catal. Today 136, 93–103 (2008). doi:10.1016/j.cattod.2008.02.013

    Article  Google Scholar 

  24. Kočí, P., Schejbal, M., Trdlička, J., Gregor, T., et al.: Transient behaviour of catalytic monolith with NOx storage capacity. Catal. Today 119(1–4), 64–72 (2007). doi:10.1016/j.cattod.2006.08.014

    Google Scholar 

  25. Güthenke, A., Chatterjee, D., Weibel, M., Waldbüßer, N., Kočí, P., Marek, M., Kubíček, M.: Development and application of a model for a storage and reduction catalyst. Chem. Eng. Sci. 62(18–20), 5357–5363 (2007). doi:10.1016/j.ces.2007.01.049

    Article  Google Scholar 

  26. Kočí, P., Plát, F., Štěpánek, J., Kubíček, M., Marek, M.: Dynamics and selectivity of NOx reduction in NOx storage catalytic monolith. Catal. Today 137(2–4), 253–260 (2008). doi:10.1016/j.cattod.2007.11.023

    Google Scholar 

  27. Kočí, P., Plat, F., Stepanek, J., Bartova, S., Marek, M., Kubicek, M., Schmeisser, V., Chatterjee, D., Weibel, M.: Global kinetic model for the regeneration of NOx storage catalyst with CO, H2, and C3H6 in the presence of CO2 and H2O. Catal. Today 147, S257–S264 (2009). doi:10.1016/j.cattod.2009.07.036

    Article  Google Scholar 

  28. Kočí, P., Bártová, S., Mráček, D., Marek, M., Choi, J., Kim, M., Pihl, J., Partridge, W.: Effective model for prediction of N2O and NH3 formation during the regeneration of NOx storage catalyst. Top. Catal. 56(1), 118–124 (2013). doi:10.1007/s11244-013-9939-y

    Google Scholar 

  29. Chaugule, S.S., Yezerets, A., Currier, N.W., Ribeiro, F.H., Delgass, W.N.: Fast NOx storage on Pt/BaO/γ-Al2O3 lean NOx traps with NO2 + O2 and NO + O2: effects of Pt, Ba loading. Catal. Today 151(3–4), 291–303 (2010). doi:10.1016/j.cattod.2010.02.024

    Article  Google Scholar 

  30. Shwan, S., Partridge, W., Choi, J.S., Olsson, L.: Kinetic modeling of NOx storage and reduction using spatially resolved MS measurements. Appl. Catal. B Environ. 147, 1028–1041 (2014). doi:10.1016/j.apcatb.2013.10.023

    Article  Google Scholar 

  31. Shi, C., Ji, Y., Graham, U.M., Jacobs, G., Crocker, M., Zhang, Z., Wang, Y., Toops, T.: NOx storage and reduction properties of model ceria-based lean NOx trap catalysts. Appl. Catal. B Environ. 119–120, 183–196 (2012). doi:10.1016/j.apcatb.2012.02.028

    Article  Google Scholar 

  32. Koop, J., Deutschmann, O.: Modeling and simulation of NOx abatement with storage/reduction catalysts for lean burn and diesel engines. SAE Technical Paper (2007). doi: 10.4271/2007-01-1142

  33. Abdulhamid, H., Fridell, E., Skoglundh, M.: The reduction phase in NOx storage catalysis: effect of type of precious metal and reducing agent. Appl. Catal. B Environ. 62(3–4), 319–328 (2006). doi:10.1016/j.apcatb.2005.08.014

    Article  Google Scholar 

  34. Pihl, J., Parks, J., Daw, C., Root, T.: Product selectivity during regeneration of lean NOx trap catalysts. SAE Technical Paper (2006). doi:10.4271/2006-01-3441

  35. Epling, W.S., Yezerets, A., Currier, N.W.: The effects of regeneration conditions on NOX and NH3 release from NOX storage/reduction catalysts. Appl. Catal. B Environ. 74(1–2), 117–129 (2007). doi:10.1016/j.apcatb.2007.02.003

    Article  Google Scholar 

  36. Choi, J., Partridge, W.P., Pihl, J.A., Kim, M., Kočí, P., Daw, C.S.: Spatiotemporal distribution of NOx storage and impact on NH3 and N2O selectivities during lean/rich cycling of a Ba-based lean NOx trap catalyst. Catal. Today 184(1), 20–26 (2012). doi:10.1016/j.cattod.2011.11.007

    Article  Google Scholar 

  37. Lindholm, A., Currier, N.W., Li, J., Yezerets, A., Olsson, L.: Detailed kinetic modeling of storage and reduction with hydrogen as the reducing agent and in the presence of CO2 and H2O over a Pt/Ba/Al catalyst. J. Catal. 258(1), 273–288 (2008). doi:10.1016/j.jcat.2008.06.022

    Article  Google Scholar 

  38. Abdulhamid, H., Fridella, E., Skoglundh, M.: Influence of the type of reducing agent (H2, CO, C3H6 and C3H8) on the reduction of stored NOx in a Pt/BaO/Al2O3 model catalyst. Top. Catal. 30–31(1–4), 161–168 (2004). doi:10.1023/B:TOCA.0000029745.87107.b8

    Article  Google Scholar 

  39. Matsumoto, S., Ikeda, Y., Suzuki, H., Ogai, M., Miyoshi, N.: NOx storage-reduction catalyst for automotive exhaust with improved tolerance against sulfur poisoning. Appl. Catal. B Environ. 25(2–3), 115–124 (2000). doi:10.1016/S0926-3373(99)00124-1

    Article  Google Scholar 

  40. Poulston, S., Rajaram, R.R.: Regeneration of NOx trap catalysts. Catal. Today 81(4), 603–610 (2003). doi:10.1016/S0920-5861(03)00158-5

    Article  Google Scholar 

  41. Lindholm, A., Currier, N.W., Fridell, E., Yezerets, A., Olsson, L.: NOx storage and reduction over Pt based catalysts with hydrogen as the reducing agent: influence of H2O and CO2. Appl. Catal. B Environ. 75(1–2), 78–87 (2007). doi:10.1016/j.apcatb.2007.03.008

    Article  Google Scholar 

  42. Elizundia, U., Duraiswami, D., Pereda-Ayo, B., López-Fonseca, R., González-Velasco, J.R.: Controlling the selectivity to N2O over Pt/Ba/Al2O3 NOX storage/reduction catalysts. Catal. Today 176(1), 324–327 (2011). doi:10.1016/j.cattod.2010.11.075

    Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored in part by the U.S. Department Of Energy Office Of Vehicle Technologies, with Gurpreet Singh and Ken Howden as project managers. This work was also funded in part through the Gamma Technologies Research Initiatives Program

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Dudgeon.

Additional information

This manuscript has been coauthored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafigh, M., Dudgeon, R., Pihl, J. et al. Development of a Global Kinetic Model for a Commercial Lean NOx Trap Automotive Catalyst Based on Laboratory Measurements. Emiss. Control Sci. Technol. 3, 73–92 (2017). https://doi.org/10.1007/s40825-016-0049-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40825-016-0049-8

Keywords

Navigation