Skip to main content

Advertisement

Log in

Satellite Remote Sensing Contributions to Wildland Fire Science and Management

  • Fire Science Management (M Alexander, Section Editor)
  • Published:
Current Forestry Reports Aims and scope Submit manuscript

Abstract

Purpose

This paper reviews the most recent literature related to the use of remote sensing (RS) data in wildland fire management.

Recent Findings

Studies dealing with pre-fire assessment, active fire detection, and fire effect monitoring are reviewed in this paper. The analysis follows the different fire management categories: fire prevention, detection, and post-fire assessment. Extracting the main trends from each of these temporal sections, recent RS literature shows growing support of the combined use of different sensors, particularly optical and radar data and lidar and optical passive images. Dedicated fire sensors have been developed in the last years, but still, most fire products are derived from sensors that were designed for other purposes. Therefore, the needs of fire managers are not always met, both in terms of spatial and temporal scales, favouring global over local scales because of the spatial resolution of existing sensors. Lidar use on fuel types and post-fire regeneration is more local, and mostly not operational, but future satellite lidar systems may help to obtain operational products. Regional and global scales are also combined in the last years, emphasizing the needs of using upscaling and merging methods to reduce uncertainties of global products. Validation is indicated as a critical phase of any new RS-based product. It should be based on the independent reference information acquired from statistically derived samples.

Summary

The main challenges of using RS for fire management rely on the need to improve the integration of sensors and methods to meet user requirements, uncertainty characterization of products, and greater efforts on statistical validation approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Chuvieco E. Editor. Earth observation of wildland fires in Mediterranean ecosystems. Berlin Heidelberg: Springer; 2009.

    Google Scholar 

  2. • Belenguer-Plomer MA, Tanase MA, Fernandez-Carrillo A, Chuvieco E. Burned area detection and mapping using Sentinel-1 backscatter coefficient and thermal anomalies. RSE. 2019;233:111345. https://doi.org/10.1016/j.rse.2019.111345Description of a comprehensive BA algorithm based on radar images.

    Article  Google Scholar 

  3. Ramo R, García M, Rodríguez D, Chuvieco E. A data mining approach for global burned area mapping. Int J Appl Earth Obs Geoinf. 2018;73:39–51. https://doi.org/10.1016/j.jag.2018.05.027.

    Article  Google Scholar 

  4. Giglio L, Loboda T, Roy DP, Quayle B, Justice CO. An active-fire based burned area mapping algorithm for the MODIS sensor. RSE. 2009;113(2):408–20.

    Google Scholar 

  5. Stroppiana D, Azar R, Calò F, Pepe A, Imperatore P, Boschetti M, et al. Integration of optical and SAR data for burned area mapping in Mediterranean regions. Remote Sens. 2015;7(2):1320–45.

    Google Scholar 

  6. Garcia M, Riano D, Chuvieco E, Salas J, Danson FM. Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules. RSE. 2011;115(6):1369–79. https://doi.org/10.1016/j.rse.2011.01.017.

    Article  Google Scholar 

  7. Yebra M, Dennison P, Chuvieco E, Riaño D, Zylstra P, Hunt ER, et al. A global review of remote sensing of live fuel moisture content for fire danger assessment: moving towards operational products. RSE. 2013;136:455–68. https://doi.org/10.1016/j.rse.2013.05.029.

    Article  Google Scholar 

  8. Hislop S, Jones S, Soto-Berelov M, Skidmore A, Haywood A, Nguyen TH. A fusion approach to forest disturbance mapping using time series ensemble techniques. RSE. 2019;221:188–97. https://doi.org/10.1016/j.rse.2018.11.025.

    Article  Google Scholar 

  9. Luo K, Quan X, He B, Yebra M. Effects of live fuel moisture content on wildfire occurrence in fire-prone regions over Southwest China. Forests. 2019;10(10):887.

    Google Scholar 

  10. Nolan RH, Boer MM, Resco de Dios V, Caccamo G, Bradstock RA. Large-scale, dynamic transformations in fuel moisture drive wildfire activity across Southeastern Australia. Geophys Res Lett. 2016;43(9):4229–38.

    Google Scholar 

  11. Pimont F, Ruffault J, Martin-StPaul N, Dupuy J-L. A cautionary note regarding the use of cumulative burnt areas for the determination of fire danger index breakpoints. IJWF. 2019;28(3):254–8.

    Google Scholar 

  12. • Yebra M, Quan X, Riaño D, Larraondo PR, van Dijk AI, Cary GJ. A fuel moisture content and flammability monitoring methodology for continental Australia based on optical remote sensing. RSE. 2018;212:260–72 A practical application of a RS product used for fire risk estimation at national level.

    Google Scholar 

  13. Konings AG, Rao K, Steele-Dunne SC. Macro to micro: microwave remote sensing of plant water content for physiology and ecology. New Phytol. 2019;223(3):1166–72. https://doi.org/10.1111/nph.15808.

    Article  Google Scholar 

  14. Wang L, Quan X, He B, Yebra M, Xing M, Liu X. Assessment of the dual polarimetric sentinel-1A data for forest fuel moisture content estimation. Remote Sens. 2019;11(13):1568.

    Google Scholar 

  15. Jia S, Kim SH, Nghiem SV, Kafatos M. Estimating live fuel moisture using SMAP L-band radiometer soil moisture for Southern California, USA. Remote Sens. 2019;11(13):1575.

    Google Scholar 

  16. Ruffault J, Martin-StPaul N, Pimont F, Dupuy J-L. How well do meteorological drought indices predict live fuel moisture content (LFMC)? An assessment for wildfire research and operations in Mediterranean ecosystems. Agric For Meteorol. 2018;262:391–401. https://doi.org/10.1016/j.agrformet.2018.07.031.

    Article  Google Scholar 

  17. Jolly WM, Johnson DM. Pyro-ecophysiology: shifting the paradigm of live Wildland fuel research. Fire. 2018;1(1):8.

    Google Scholar 

  18. Nolan RH, Hedo J, Arteaga C, Sugai T, Resco de Dios V. Physiological drought responses improve predictions of live fuel moisture dynamics in a Mediterranean forest. Agric For Meteorol. 2018;263:417–27. https://doi.org/10.1016/j.agrformet.2018.09.011.

    Article  Google Scholar 

  19. Yebra M, Scortechini G, Badi A, Beget ME, Boer MM, Bradstock R, et al. Globe-LFMC, a global plant water status database for vegetation ecophysiology and wildfire applications. Sci Data. 2019;6(1):155. https://doi.org/10.1038/s41597-019-0164-9.

  20. Pyne SJ, Andrews PL, Laven RD. Introduction to wildland fire. 2nd ed. New York: Wiley; 1996.

    Google Scholar 

  21. Chuvieco E. Wildland fire danger estimation and mapping. Singapore: The Role of Remote Sensing Data. World Scientific Publishing; 2003.

    Google Scholar 

  22. Albini FA. Estimating wildfire behavior and effects. Gen. Tech. Rep. INT-GTR-30. Ogden: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 92 p; 1976.

    Google Scholar 

  23. Wotton BM, Alexander ME, Taylor SW. Updates and Revisions to the 1992 Canadian Forest Fire Behavior Prediction System. Ontario. Information Report GLC-X-10, 45p.: Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie; 2009.

    Google Scholar 

  24. García M, Popescu S, Riaño D, Zhao K, Neuenschwander A, Agca M, et al. Characterization of canopy fuels using ICESat/GLAS data. RSE. 2012;123(6):81–9. https://doi.org/10.1016/j.rse.2012.03.018.

    Article  Google Scholar 

  25. Liu L, Lim S, Shen X, Yebra M. A hybrid method for segmenting individual trees from airborne lidar data. Comput Electron Agric. 2019;163:104871.

    Google Scholar 

  26. Bright BC, Hudak AT, Meddens AJH, Hawbaker TJ, Briggs JS, Kennedy RE. Prediction of forest canopy and surface fuels from Lidar and satellite time series data in a bark beetle-affected forest. Forests. 2017;8(9):322. https://doi.org/10.3390/f8090322.

    Article  Google Scholar 

  27. García M, Saatchi S, Casas A, Koltunov A, Ustin SL, Ramirez C, et al. Extrapolating Forest canopy fuel properties in the California rim fire by combining airborne LiDAR and Landsat OLI data. Remote Sens. 2017;9(4):394.

    Google Scholar 

  28. González-Ferreiro E, Arellano-Pérez S, Castedo-Dorado F, Hevia A, Vega JA, Vega-Nieva D, et al. Modelling the vertical distribution of canopy fuel load using national forest inventory and low-density airborne laser scanning data. PLoS One. 2017;12(4):e0176114. https://doi.org/10.1371/journal.pone.0176114.

    Article  CAS  Google Scholar 

  29. Romero Ramirez FJ, Navarro-Cerrillo RM, Varo-Martínez MÁ, Quero JL, Doerr S, Hernández-Clemente R. Determination of forest fuels characteristics in mortality-affected Pinus forests using integrated hyperspectral and ALS data. Int J Appl Earth Obs Geoinf. 2018;68:157–67. https://doi.org/10.1016/j.jag.2018.01.003.

    Article  Google Scholar 

  30. Marselis SM, Yebra M, Jovanovic T, van Dijk AI. Deriving comprehensive forest structure information from mobile laser scanning observations using automated point cloud classification. Environ Model Softw. 2016;82:142–51.

    Google Scholar 

  31. Chen Y, Zhu X, Yebra M, Harris S, Tapper N. Development of a predictive model for estimating forest surface fuel load in Australian eucalypt forests with LiDAR data. Environ Model Softw. 2017;97:61–71.

    Google Scholar 

  32. Richter K, Stelling N, Maas HG. Correcting attenuation effects caused by interactions in the forest canopy in full-waveform airborne laser scanner data. Int Arch Photogramm Remote Sens Spat Inf Sci. 2014;XL-3:273–80. https://doi.org/10.5194/isprsarchives-XL-3-273-2014.

    Article  Google Scholar 

  33. Alonso-Benito A, Arroyo LA, Arbelo M, Hernandez-Leal P. Fusion of WorldView-2 and LiDAR data to map fuel types in the Canary Islands. Remote Sens. 2016;8(8):669. https://doi.org/10.3390/rs8080669.

    Article  Google Scholar 

  34. García M, Riaño D, Chuvieco E, Salas J, Danson FM. Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules. Remote Sens Environ. 2011;115(6):1369–79. https://doi.org/10.1016/j.rse.2011.01.017Combined use of Lidar and passive optical sensors for fuel type mapping.

    Article  Google Scholar 

  35. Marino E, Ranz P, Tome JL, Noriega MA, Esteban J, Madrigal J. Generation of high-resolution fuel model maps from discrete airborne laser scanner and Landsat-8 OLI: a low-cost and highly updated methodology for large areas. Remote Sens Environ. 2016;187:267–80. https://doi.org/10.1016/j.rse.2016.10.020.

    Article  Google Scholar 

  36. Stavros EN, Coen J, Peterson B, Singh H, Kennedy K, Ramirez C, et al. Use of imaging spectroscopy and LIDAR to characterize fuels for fire behavior prediction. Remote Sens Appl Soc Environ. 2018;11:41–50. https://doi.org/10.1016/j.rsase.2018.04.010.

    Article  Google Scholar 

  37. Sanchez YS, Martinez-Grana A, Frances FS, Picado MM. Mapping wildfire ignition probability using Sentinel 2 and LiDAR (Jerte Valley, Caceres, Spain). Sensors. 2018;18(3):826. https://doi.org/10.3390/s18030826.

    Article  Google Scholar 

  38. García M, Saatchi S, Ustin S, Balzter H. Modelling forest canopy height by integrating airborne LiDAR samples with satellite radar and multispectral imagery. Int J Appl Earth Obs Geoinf. 2018;66:159–73.

    Google Scholar 

  39. Stefanidou A, Dragozi E, Stavrakoudis D, Gitas IZ. Fuel type mapping using object-based image analysis of DMC and Landsat-8 OLI imagery. Geocarto Int. 2018;33(10):1064–83. https://doi.org/10.1080/10106049.2017.1333532.

    Article  Google Scholar 

  40. Bajocco S, Dragoz E, Gitas I, Smiraglia D, Salvati L, Ricotta C. Mapping forest fuels through vegetation phenology: the role of coarse-resolution satellite time-series. PLoS One. 2015;10(3):e0119811. https://doi.org/10.1371/journal.pone.0119811.

    Article  CAS  Google Scholar 

  41. Flannigan MD, Vonder Haar TH. Forest fire monitoring using NOAA satellite AVHRR. Can J For Res. 1986;16:975–82.

    Google Scholar 

  42. Dwyer E, Pereira JMC, Grégorie J-M, DaCamara CC. Characterization of the spatio-temporal patterns of global fire activity using satellite imagery for the period April 1992 to March 1993. J Biogeogr. 2000;27(1):57–69. https://doi.org/10.1046/j.1365-2699.2000.00339.x.

    Article  Google Scholar 

  43. Lizundia-Loiola J, Pettinari ML, Chuvieco E. Temporal anomalies in burned area trends: satellite estimations of the Amazonian 2019 Fire Crisis. Remote Sens. 2020;12(1):151. https://doi.org/10.3390/rs12010151.

    Article  Google Scholar 

  44. Baker KR, Woody MC, Valin L, Szykman J, Yates EL, Iraci LT, et al. Photochemical model evaluation of 2013 California wild fire air quality impacts using surface, aircraft, and satellite data. Sci Total Environ. 2018;637:1137–49. https://doi.org/10.1016/j.scitotenv.2018.05.048.

    Article  CAS  Google Scholar 

  45. Duc HN, Chang LTC, Azzi M, Jiang NB. Smoke aerosols dispersion and transport from the 2013 New South Wales (Australia) bushfires. Environ Monit Assess. 2018;190(7):428. https://doi.org/10.1007/s10661-018-6810-4.

  46. Adams C, McLinden CA, Shephard MW, Dickson N, Dammers E, Chen J, et al. Satellite-derived emissions of carbon monoxide, ammonia, and nitrogen dioxide from the 2016 Horse River wildfire in the Fort McMurray area. Atmos Chem Phys. 2019;19(4):2577–99. https://doi.org/10.5194/acp-19-2577-2019.

    Article  CAS  Google Scholar 

  47. Cruz-López MI, Manzo-Delgado LDL, Aguirre-Gómez R, Chuvieco E, Equihua-Benítez JA. Spatial distribution of forest fire emissions: a case study in three Mexican ecoregions. Remote Sens. 2019;11(10):1185.

    Google Scholar 

  48. Evangeliou N, Kylling A, Eckhardt S, Myroniuk V, Stebel K, Paugam R, et al. Open fires in Greenland in summer 2017: transport, deposition and radiative effects of BC, OC and BrC emissions. Atmos Chem Phys. 2019;19(2):1393–411. https://doi.org/10.5194/acp-19-1393-2019.

    Article  CAS  Google Scholar 

  49. Coen JL, Stavros EN, Fites-Kaufman JA. Deconstructing the King megafire. Ecol Appl. 2018;28(6):1565–80. https://doi.org/10.1002/eap.1752.

    Article  Google Scholar 

  50. Pinto RMS, Benali A, Sa ACL, Fernandes PM, Soares PMM, Cardoso RM, et al. Probabilistic fire spread forecast as a management tool in an operational setting. Springerplus. 2016;5:Unsp 1205. https://doi.org/10.1186/s40064-016-2842-9.

  51. Anejionu OCD, Blackburn GA, Whyatt JD. Detecting gas flares and estimating flaring volumes at individual flow stations using MODIS data. RSE. 2015;158:81–94. https://doi.org/10.1016/j.rse.2014.11.018.

    Article  Google Scholar 

  52. Marchese F, Neri M, Falconieri A, Lacava T, Mazzeo G, Pergola N, et al. The contribution of multi-sensor infrared satellite observations to monitor Mt. Etna (Italy) activity during May to August 2016. Remote Sens. 2018;10(12):1948. https://doi.org/10.3390/rs10121948.

    Article  Google Scholar 

  53. Wooster MJ, Roberts G, Freeborn PH, Xu W, Govaerts Y, Beeby R, et al. LSA SAF Meteosat FRP products - part 1: algorithms, product contents, and analysis. Atmos Chem Phys. 2015;15(22):13217–39. https://doi.org/10.5194/acp-15-13217-2015.

    Article  CAS  Google Scholar 

  54. Hally B, Wallace L, Reinke K, Jones S, Skidmore A. Advances in active fire detection using a multi-temporal method for next-generation geostationary satellite data. Int J Digit Earth. 2019;12(9):1030–45. https://doi.org/10.1080/17538947.2018.1497099.

    Article  Google Scholar 

  55. Wickramasinghe C, Wallace L, Reinke K, Jones S. Implementation of a new algorithm resulting in improvements in accuracy and resolution of SEVIRI hotspot products. Remote Sens Lett. 2018;9(9):877–85.

    Google Scholar 

  56. Wickramasinghe C, Jones S, Reinke K, Wallace L. Development of a multi-spatial resolution approach to the surveillance of active fire lines using Himawari-8. Remote Sens. 2016;8(11):932.

    Google Scholar 

  57. • Giglio L, Schroeder W, Justice CO. The collection 6 MODIS active fire detection algorithm and fire products. RSE. 2016;178:31–41 Description of the most widely used fire detection algorithm.

    Google Scholar 

  58. Oliva P, Schroeder W. Assessment of VIIRS 375 m active fire detection product for direct burned area mapping. RSE. 2015;160:144–55.

    Google Scholar 

  59. Csiszar I, Schroeder W, Giglio L, Ellicott E, Vadrevu KP, Justice CO, et al. Active fires from the Suomi NPP visible infrared imaging radiometer suite: product status and first evaluation results. J Geophys Res-Atmos. 2014;119(2):803–16. https://doi.org/10.1002/2013jd020453.

    Article  Google Scholar 

  60. Lin ZY, Chen F, Niu Z, Li B, Yu B, Jia HC, et al. An active fire detection algorithm based on multi-temporal FengYun-3C VIRR data. RSE. 2018;211:376–87. https://doi.org/10.1016/j.rse.2018.04.027.

    Article  Google Scholar 

  61. Schroeder W, Oliva P, Giglio L, Quayle B, Lorenz E, Morelli F. Active fire detection using Landsat-8/OLI data. RSE. 2016;185:210–20.

    Google Scholar 

  62. Mitchell S, Jones S, Reinke K, Lorenz E, Reulke R. Assessing the utility of the TET-1 hotspot detection and characterization algorithm for determining wildfire size and temperature. IJRS. 2016;37(20):4731–47. https://doi.org/10.1080/01431161.2016.1204026.

    Article  Google Scholar 

  63. Atwood EC, Englhart S, Lorenz E, Halle W, Wiedemann W, Siegert F. Detection and characterization of low temperature peat fires during the 2015 fire catastrophe in Indonesia using a new high-sensitivity fire monitoring satellite sensor (FireBird). PLoS One. 2016;11(8):e0159410. https://doi.org/10.1371/journal.pone.0159410.

    Article  CAS  Google Scholar 

  64. Schroeder W, Oliva P, Giglio L, Csiszar IA. The new VIIRS 375 m active fire detection data product: algorithm description and initial assessment. RSE. 2014;143:85–96. https://doi.org/10.1016/j.rse.2013.12.008.

    Article  Google Scholar 

  65. Noojipady P, Morton DC, Macedo MN, Victoria DC, Huang CQ, Gibbs HK, et al. Forest carbon emissions from cropland expansion in the Brazilian Cerrado biome. Environ Res Lett. 2017;12(2):025004. https://doi.org/10.1088/1748-9326/aa5986.

  66. Polivka TN, Wang J, Ellison LT, Hyer EJ, Ichoku CM. Improving nocturnal fire detection with the VIIRS day-night band. IEEE Trans Geosci Remote. 2016;54(9):5503–19. https://doi.org/10.1109/tgrs.2016.2566665.

    Article  Google Scholar 

  67. Waigl CF, Prakash A, Stuefer M, Verbyla D, Dennison P. Fire detection and temperature retrieval using EO-1 Hyperion data over selected Alaskan boreal forest fires. Int J Appl Earth Obs Geoinf. 2019;81:72–84. https://doi.org/10.1016/j.jag.2019.03.004.

    Article  Google Scholar 

  68. Xia HP, Chen YH, Quan JL. A simple method based on the thermal anomaly index to detect industrial heat sources. Int J Appl Earth Obs Geoinf. 2018;73:627–37. https://doi.org/10.1016/j.jag.2018.08.003.

    Article  Google Scholar 

  69. Kato S, Kouyama T, Nakamura R, Matsunaga T, Fukuhara T. Simultaneous retrieval of temperature and area according to sub-pixel hotspots from nighttime Landsat 8 OLI data. RSE. 2018;204:276–86. https://doi.org/10.1016/j.rse.2017.10.025.

    Article  Google Scholar 

  70. • Parker RJ, Boesch H, Wooster MJ, Moore DP, Webb AJ, Gaveau D, et al. Atmospheric CH4 and CO2 enhancements and biomass burning emission ratios derived from satellite observations of the 2015 Indonesian fire plumes. Atmos Chem Phys. 2016;16(15):10111–31. https://doi.org/10.5194/acp-16-10111-2016Atmospheric emission estimations from top-down satellite products.

    Article  CAS  Google Scholar 

  71. Whitburn S, Van Damme M, Clarisse L, Hurtmans D, Clerbaux C, Coheur PF. IASI-derived NH3 enhancement ratios relative to CO for the tropical biomass burning regions. Atmos Chem Phys. 2017;17(19):12239–52. https://doi.org/10.5194/acp-17-12239-2017.

    Article  CAS  Google Scholar 

  72. Elvidge CD, Zhizhin M, Hsu FC, Baugh K, Khomarudin MR, Vetrita Y, et al. Long-wave infrared identification of smoldering peat fires in Indonesia with nighttime Landsat data. Environ Res Lett. 2015;10(6):065002. https://doi.org/10.1088/1748-9326/10/6/065002.

  73. Sofan P, Bruce D, Jones E, Marsden J. Detection and validation of tropical peatland flaming and smouldering using Landsat-8 SWIR and TIRS Bands. Remote Sens. 2019;11(4):465. https://doi.org/10.3390/rs11040465.

    Article  Google Scholar 

  74. •• Chuvieco E, Mouillot F, van der Werf GR, San Miguel J, Tanasse M, Koutsias N, et al. Historical background and current developments for mapping burned area from satellite Earth observation. RSE. 2019;225:45–64. https://doi.org/10.1016/j.rse.2019.02.013Recent review paper on burned area methods and products from RS data.

    Article  Google Scholar 

  75. • Roteta E, Bastarrika A, Storm T, Chuvieco E. Development of a Sentinel-2 burned area algorithm: generation of a small fire database for northern hemisphere tropical Africa. RSE. 2019;222(1):1–17. https://doi.org/10.1016/j.rse.2018.12.011First continental-scale BA product derived from Sentinel-2 imagery.

    Article  Google Scholar 

  76. Hawbaker TJ, Vanderhoof MK, Beal Y-J, Takacs JD, Schmidt GL, Falgout JT, et al. Mapping burned areas using dense time-series of Landsat data. RSE. 2017;198:504–22.

    Google Scholar 

  77. • Giglio L, Boschetti L, Roy DP, Humber ML, Justice CO. The Collection 6 MODIS Burned Area Mapping Algorithm and Product. RSE. 2018;217:72–85 Description of the BA algorithm used for NASA products.

    Google Scholar 

  78. Chuvieco E, Lizundia-Loiola J, Pettinari ML, Ramo R, Padilla M, Tansey K, et al. Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies. Earth Syst Sci Data. 2018;10:2015–31. https://doi.org/10.5194/essd-10-2015-2018.

    Article  Google Scholar 

  79. • Lizundia-Loiola J, Otón G, Ramo R, Chuvieco E. A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data. RSE. 2020;236:111493. https://doi.org/10.1016/j.rse.2019.111493Descripcion of the BA algorithm used for FireCCI ESA products.

    Article  Google Scholar 

  80. Otón G, Ramo R, Lizundia-Loiola J, Chuvieco E. Global detection of Long-term (1982–2017) burned area with AVHRR-LTDR data. Remote Sens. 2019;11(18):2079. https://doi.org/10.3390/rs11182079.

    Article  Google Scholar 

  81. Abatzoglou JT, Williams AP, Boschetti L, Zubkova M, Kolden CA. Global patterns of interannual climate-fire relationships. Glob Chang Biol. 2018;24(11):5164–75. https://doi.org/10.1111/gcb.14405.

    Article  Google Scholar 

  82. • Andela N, Morton DC, Giglio L, Chen Y, van der Werf GR, Kasibhatla PS, et al. A human-driven decline in global burned area. Science. 2017;356(6345):1356–62. https://doi.org/10.1126/science.aal4108Global trends in fire occurrence based on NASA BA products.

    Article  CAS  Google Scholar 

  83. Hantson S, Lasslop G, Kloster S, Chuvieco E. Anthropogenic effects on global mean fire size. IJWF. 2015;24(5):589–96. https://doi.org/10.1071/WF14208.

    Article  Google Scholar 

  84. Earl N, Simmonds I. Spatial and temporal variability and trends in 2001-2016 global fire activity. J Geophys Res-Atmos. 2018;123(5):2524–36. https://doi.org/10.1002/2017jd027749.

    Article  Google Scholar 

  85. Zubkova M, Boschetti L, Abatzoglou JT, Giglio L. Changes in fire activity in Africa from 2002 to 2016 and their potential drivers. Geophys Res Lett. 2019;46(13):7643–53. https://doi.org/10.1029/2019gl083469.

    Article  Google Scholar 

  86. Hall JV, Loboda TV, Giglio L, McCarty GW. A MODIS-based burned area assessment for Russian croplands: mapping requirements and challenges. RSE. 2016;184:506–21.

    Google Scholar 

  87. Vadrevu K, Lasko K. Fire regimes and potential bioenergy loss from agricultural lands in the Indo-Gangetic Plains. J Environ Manag. 2015;148:10–20. https://doi.org/10.1016/j.jenvman.2013.12.026.

    Article  Google Scholar 

  88. Wu J, Kong SF, Wu FQ, Cheng Y, Zheng SR, Yan Q, et al. Estimating the open biomass burning emissions in central and eastern China from 2003 to 2015 based on satellite observation. Atmos Chem Phys. 2018;18(16):11623–46. https://doi.org/10.5194/acp-18-11623-2018.

    Article  CAS  Google Scholar 

  89. Lasslop G, Coppola AI, Voulgarakis A, Yue C, Veraverbeke S. Influence of fire on the carbon cycle and climate. Curr Clim Chang Rep. 2019;5(2):112–23. https://doi.org/10.1007/s40641-019-00128-9.

    Article  Google Scholar 

  90. • Hantson S, Arneth A, Harrison SP, Kelley DI, Prentice IC, Rabin SS, et al. The status and challenge of global fire modelling. Biogeosciences. 2016;13(11):3359–75 Review of fire models included in global vegetation models.

    Google Scholar 

  91. Kloster S, Lasslop G. Historical and future fire occurrence (1850 to 2100) simulated in CMIP5 earth system models. Glob Planet Chang. 2017;150:58–69.

    Google Scholar 

  92. Laurent P, Mouillot F, Yue C, Ciais P, Moreno MV, Nogueira JMP. FRY, a global database of fire patch functional traits derived from space-borne burned area products. Sci Data. 2018;5:180132. https://doi.org/10.1038/sdata.2018.132.

    Article  CAS  Google Scholar 

  93. Andela N, Morton DC, Giglio L, Paugam R, Chen Y, Hantson S, et al. The global fire atlas of individual fire size, duration, speed, and direction. Earth Syst Sci Data. 2019;11:529–52. https://doi.org/10.5194/essd-11-529-2019.

    Article  Google Scholar 

  94. Oom D, Silva PC, Bistinas I, Pereira JMC. Highlighting biome-specific sensitivity of fire size distributions to time-gap parameter using a new algorithm for fire event individuation. Remote Sens. 2016;8(8):663. https://doi.org/10.3390/rs8080663.

    Article  Google Scholar 

  95. Kantzas EP, Quegan S, Lomas M. Improving the representation of fire disturbance in dynamic vegetation models by assimilating satellite data: a case study over the Arctic. Geosci Model Dev. 2015;8(8):2597–609. https://doi.org/10.5194/gmd-8-2597-2015.

    Article  Google Scholar 

  96. Laurent P, Mouillot F, Moreno MV, Yue C, Ciais P. Varying relationships between fire radiative power and fire size at a global scale. Biogeosciences. 2019;16(2):275–88. https://doi.org/10.5194/bg-16-275-2019.

    Article  CAS  Google Scholar 

  97. Brennan J, Gomez-Dans JL, Disney M, Lewis P. Theoretical uncertainties for global satellite-derived burned area estimates. Biogeosciences. 2019;16(16):3147–64. https://doi.org/10.5194/bg-16-3147-2019.

    Article  Google Scholar 

  98. • van der Werf GR, Randerson JT, Giglio L, van Leeuwen TT, Chen Y, Rogers BM, et al. Global fire emissions estimates during 1997–2016. Earth Syst Sci Data. 2017;9:697–720. https://doi.org/10.5194/essd-9-697-2017Estimations of fire emissions derived from satellite BA products.

    Article  Google Scholar 

  99. Poulter B, Cadule P, Cheiney A, Ciais P, Hodson E, Peylin P, et al. Sensitivity of global terrestrial carbon cycle dynamics to variability in satellite-observed burned area. Glob Biogeochem Cycles. 2015;29(2):207–22. https://doi.org/10.1002/2013gb004655.

    Article  CAS  Google Scholar 

  100. Majdi M, Turquety S, Sartelet K, Legorgeu C, Menut L, Kim Y. Impact of wildfires on particulate matter in the Euro-Mediterranean in 2007: sensitivity to some parameterizations of emissions in air quality models. Atmos Chem Phys. 2019;19(2):785–812. https://doi.org/10.5194/acp-19-785-2019.

    Article  CAS  Google Scholar 

  101. Qiu XH, Duan L, Chai FH, Wang SX, Yu Q, Wang SL. Deriving high-resolution emission inventory of open biomass burning in China based on satellite observations. Environ Sci Technol. 2016;50(21):11779–86. https://doi.org/10.1021/acs.est.6b02705.

    Article  CAS  Google Scholar 

  102. Gleason KE, McConnell JR, Arienzo MM, Chellman N, Calvin WM. Four-fold increase in solar forcing on snow in western US burned forests since 1999. Nat Commun. 2019;10:2026. https://doi.org/10.1038/s41467-019-09935-y.

  103. Monks SA, Arnold SR, Emmons LK, Law KS, Turquety S, Duncan BN, et al. Multi-model study of chemical and physical controls on transport of anthropogenic and biomass burning pollution to the Arctic. Atmos Chem Phys. 2015;15(6):3575–603. https://doi.org/10.5194/acp-15-3575-2015.

    Article  CAS  Google Scholar 

  104. Liu ZH, Ballantyne AP, Cooper LA. Biophysical feedback of global forest fires on surface temperature. Nat Commun. 2019;10(1):214. https://doi.org/10.1038/s41467-018-08237-z.

  105. Mota B, Gobron N, Cappucci F, Morgan O. Burned area and surface albedo products: assessment of change consistency at global scale. RSE. 2019;225:249–66. https://doi.org/10.1016/j.rse.2019.03.001.

    Article  Google Scholar 

  106. Ziade R, Abdallah C, Baghdadi N. The effect of forest fire on mass movement in Lebanese mountainous areas. IJWF. 2014;23(6):845–59. https://doi.org/10.1071/wf13077.

    Article  Google Scholar 

  107. Gutierrez-Velez VH, Uriarte M, DeFries R, Pinedo-Vasquez M, Fernandes K, Ceccato P, et al. Land cover change interacts with drought severity to change fire regimes in Western Amazonia. Ecol Appl. 2014;24(6):1323–40. https://doi.org/10.1890/13-2101.1.

    Article  Google Scholar 

  108. Mayr MJ, Vanselow KA, Samimi C. Fire regimes at the arid fringe: a 16-year remote sensing perspective (2000-2016) on the controls of fire activity in Namibia from spatial predictive models. Ecol Indic. 2018;91:324–37. https://doi.org/10.1016/j.ecolind.2018.04.022.

    Article  Google Scholar 

  109. Libonati R, DaCamara CC, Setzer AW, Morelli F, Melchiori AE. An algorithm for burned area detection in the Brazilian Cerrado using 4 gm MODIS imagery. Remote Sens. 2015;7(11):15782–803. https://doi.org/10.3390/rs71115782.

    Article  Google Scholar 

  110. Guindon L, Bernier PY, Beaudoin A, Pouliot D, Villemaire P, Hall RJ, et al. Annual mapping of large forest disturbances across Canada’s forests using 250 m MODIS imagery from 2000 to 2011. Can J For Res. 2014;44(12):1545–54. https://doi.org/10.1139/cjfr-2014-0229.

    Article  Google Scholar 

  111. Sulla-Menashe D, Kennedy RE, Yang ZQ, Braaten J, Krankina ON, Friedl MA. Detecting forest disturbance in the Pacific northwest from MODIS time series using temporal segmentation. RSE. 2014;151:114–23. https://doi.org/10.1016/j.rse.2013.07.042.

    Article  Google Scholar 

  112. Ramo R, Chuvieco E. Developing a random Forest algorithm for MODIS global burned area classification. Remote Sens. 2017;9(11):1193.

    Google Scholar 

  113. Cabral AIR, Silva S, Silva PC, Vanneschi L, Vasconcelos MJ. Burned area estimations derived from Landsat ETM plus and OLI data: comparing genetic programming with maximum likelihood and classification and regression trees. ISPRS J Photogramm. 2018;142:94–105. https://doi.org/10.1016/j.isprsjprs.2018.05.007.

    Article  Google Scholar 

  114. Dragozi E, Gitas IZ, Stavrakoudis DG, Theocharis JB. Burned area mapping using support vector machines and the FuzCoC feature selection method on VHR IKONOS imagery. Remote Sens. 2014;6(12):12005–36. https://doi.org/10.3390/rs61212005.

    Article  Google Scholar 

  115. Ba R, Song WG, Li XL, Xie ZX, Lo SM. Integration of multiple spectral indices and a neural network for burned area mapping based on MODIS Data. Remote Sens. 2019;11(3):326. https://doi.org/10.3390/rs11030326.

    Article  Google Scholar 

  116. Shimabukuro YE, Miettinen J, Beuchle R, Grecchi RC, Simonetti D, Achard F. Estimating burned area in Mato Grosso, Brazil, using an object-based classification method on a systematic sample of medium resolution satellite images. IEEE J Sel Topics Appl Earth Obs Remote Sens. 2015;8(9):4502–8. https://doi.org/10.1109/jstars.2015.2464097.

    Article  Google Scholar 

  117. Alonso-Canas I, Chuvieco E. Global burned area mapping from ENVISAT-MERIS data. RSE. 2015;163:140–52. https://doi.org/10.1016/j.rse.2015.03.011.

    Article  Google Scholar 

  118. Hardtke LA, Blanco PD, del Valle HF, Metternicht GI, Sione WF. Semi-automated mapping of burned areas in semi-arid ecosystems using MODIS time-series imagery. Int J Appl Earth Obs Geoinf. 2015;38:25–35. https://doi.org/10.1016/j.jag.2014.11.011.

    Article  Google Scholar 

  119. Filipponi F. Exploitation of Sentinel-2 time series to map burned areas at the national level: a case study on the 2017 Italy wildfires. Remote Sens. 2019;11(6):622. https://doi.org/10.3390/rs11060622.

    Article  Google Scholar 

  120. Huang HY, Roy DP, Boschetti L, Zhang HKK, Yan L, Kumar SS, et al. Separability analysis of Sentinel-2A Multi-Spectral Instrument (MSI) data for burned area discrimination. Remote Sens. 2016;8(10):873. https://doi.org/10.3390/rs8100873.

    Article  Google Scholar 

  121. Reddy CS, Jha CS, Manaswini G, Alekhya V, Pasha SV, Satish KV, et al. Nationwide assessment of forest burnt area in India using Resourcesat-2 AWiFS data. Curr Sci. 2017;112(7):1521–32. https://doi.org/10.18520/cs/v112/i07/1521-1532.

    Article  Google Scholar 

  122. Meng R, Wu J, Schwager KL, Zhao F, Dennison PE, Cook BD, et al. Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a pine barrens ecosystem. RSE. 2017;191:95–109. https://doi.org/10.1016/j.rse.2017.01.016.

    Article  Google Scholar 

  123. Liu WL, Wang LT, Zhou Y, Wang SX, Zhu JF, Wang FT. A comparison of forest fire burned area indices based on HJ satellite data. Nat Hazards. 2016;81(2):971–80. https://doi.org/10.1007/s11069-015-2115-x.

    Article  Google Scholar 

  124. Fraser RH, van der Sluijs J, Hall RJ. Calibrating satellite-based indices of burn severity from UAV-derived metrics of a burned boreal forest in NWT, Canada. Remote Sens. 2017;9(3):279. https://doi.org/10.3390/rs9030279.

    Article  Google Scholar 

  125. Long T, Zhang Z, He G, Jiao W, Tang C, Wu B, et al. 30 m resolution global annual burned area mapping based on Landsat images and Google Earth Engine. Remote Sens. 2019;11(5):489.

    Google Scholar 

  126. Lohberger S, Stängel M, Atwood EC, Siegert F. Spatial evaluation of Indonesia's 2015 fire-affected area and estimated carbon emissions using Sentinel-1. Glob Chang Biol. 2018;24:644–54. https://doi.org/10.1111/gcb.13841.

    Article  Google Scholar 

  127. Lasaponara R, Tucci B. Identification of burned areas and severity using SAR Sentinel-1. IEEE Geosci Remote Sens Lett. 2019;16(6):917–21. https://doi.org/10.1109/lgrs.2018.2888641.

    Article  Google Scholar 

  128. Kalogirou V, Ferrazzoli P, Della Vecchia A, Foumelis M. On the SAR backscatter of burned forests: a model-based study in C-band, Over Burned Pine Canopies. IEEE TransGeosRS. 2014;52(10):6205–15. https://doi.org/10.1109/tgrs.2013.2295594.

    Article  Google Scholar 

  129. Bernhard EM, Twele A, Martinis S. The effect of vegetation type and density on X-band SAR backscatter after forest fires. Photogramm Fernerkundung Geoinf. 2014;4:275–85. https://doi.org/10.1127/1432-8364/2014/0222.

    Article  Google Scholar 

  130. Fernandez-Carrillo A, McCaw L, Tanase MA. Estimating prescribed fire impacts and post-fire tree survival in eucalyptus forests of Western Australia with L-band SAR data. RSE. 2019;224:133–44. https://doi.org/10.1016/j.rse.2019.02.005.

    Article  Google Scholar 

  131. Plank S, Karg S, Martinis S. Full-polarimetric burn scar mapping - the differences of active fire and post-fire situations. IJRS. 2019;40(1):253–68. https://doi.org/10.1080/01431161.2018.1512768.

    Article  Google Scholar 

  132. Quintano C, Fernandez-Manso A, Fernandez-Manso O. Combination of Landsat and Sentinel-2 MSI data for initial assessing of burn severity. Int J Appl Earth Obs Geoinf. 2018;64:221–5. https://doi.org/10.1016/j.jag.2017.09.014.

    Article  Google Scholar 

  133. Mallinis G, Mitsopoulos I, Chrysafi I. Evaluating and comparing Sentinel 2A and Landsat-8 operational land imager (OLI) spectral indices for estimating fire severity in a Mediterranean pine ecosystem of Greece. GISci Remote Sens. 2018;55(1):1–18.

    Google Scholar 

  134. Verhegghen A, Eva H, Ceccherini G, Achard F, Gond V, Gourlet-Fleury S, et al. The potential of Sentinel satellites for burnt area mapping and monitoring in the Congo Basin forests. Remote Sens. 2016;8(12):986.

    Google Scholar 

  135. Padilla M, Stehman SV, Hantson S, Oliva P, Alonso-Canas I, Bradley A, et al. Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation. RSE. 2015;160:114–21. https://doi.org/10.1016/j.rse.2014.01.008.

    Article  Google Scholar 

  136. Padilla M, Stehman SV, Chuvieco E. Validation of the 2008 MODIS-MCD45 global burned area product using stratified random sampling. RSE. 2014;144:187–96. https://doi.org/10.1016/j.rse.2014.01.008.

    Article  Google Scholar 

  137. Alves DB, Perez-Cabello F, Mimbrero MR, Febrer-Martinez M. Accuracy assessment of the latest generations of MODIS burned area products for mapping fire scars on a regional scale over Campos Amazonicos Savanna Enclave (Brazilian Amazon). J Appl Remote Sens. 2018;12(2):026026. https://doi.org/10.1117/1.jrs.12.026026.

    Article  Google Scholar 

  138. Fornacca D, Ren GP, Xiao W. Performance of Three MODIS Fire Products (MCD45A1, MCD64A1, MCD14ML), and ESA Fire_CCI in a Mountainous Area of Northwest Yunnan, China, Characterized by Frequent Small Fires. Remote Sens. 2017;9(11):1131. https://doi.org/10.3390/rs9111131.

    Article  Google Scholar 

  139. Mangeon S, Field R, Fromm M, McHugh C, Voulgarakis A. Satellite versus ground-based estimates of burned area: a comparison between MODIS based burned area and fire agency reports over North America in 2007. Anthropocene Rev. 2016;3(2):76–92.

    Google Scholar 

  140. Nowell HK, Holmes CD, Robertson K, Teske C, Hiers JK. A new picture of fire extent, variability, and drought interaction in prescribed fire landscapes: insights from Florida government records. Geophys Res Lett. 2018;45(15):7874–84. https://doi.org/10.1029/2018gl078679.

    Article  CAS  Google Scholar 

  141. Vanderhoof MK, Fairaux N, Beal Y-JG, Hawbaker TJ. Validation of the USGS Landsat burned area essential climate variable (BAECV) across the conterminous United States. RSE. 2017;198:393–406.

    Google Scholar 

  142. Vanderhoof MK, Brunner N, Beal Y-JG, Hawbaker TJ. Evaluation of the US geological survey Landsat burned area essential climate variable across the conterminous US using commercial high-resolution imagery. Remote Sens. 2017;9(7):743.

    Google Scholar 

  143. Humber ML, Boschetti L, Giglio L, Justice CO. Spatial and temporal intercomparison of four global burned area products. Int J Digit Earth. 2019;12(4):460–84.

    Google Scholar 

  144. Freeborn PH, Cochrane MA, Wooster MJ. A decade Long, multi-scale map comparison of fire regime parameters derived from three publically available satellite-based fire products: a case study in the Central African Republic. Remote Sens. 2014;6(5):4061–89. https://doi.org/10.3390/rs6054061.

    Article  Google Scholar 

  145. Kurbanov E, Vorobyev O, Leznin S, Polevshikova Y, Demisheva E. Assessment of burn severity in middle Povozhje with Landsat multitemporal data. IJWF. 2017;26(9):772–82. https://doi.org/10.1071/wf16141.

    Article  Google Scholar 

  146. Miller JD, Safford HD, Welch KR. Using one year post-fire fire severity assessments to estimate longer term effects of fire in conifer forests of northern and eastern California, USA. For Ecol Manag. 2016;382:168–83. https://doi.org/10.1016/j.foreco.2016.10.017.

    Article  Google Scholar 

  147. Meddens AJH, Kolden CA, Lutz JA. Detecting unburned areas within wildfire perimeters using Landsat and ancillary data across the northwestern United States. RSE. 2016;186:275–85. https://doi.org/10.1016/j.rse.2016.08.023.

    Article  Google Scholar 

  148. Zheng Z, Zeng YN, Li SN, Huang W. A new burn severity index based on land surface temperature and enhanced vegetation index. Int J Appl Earth Obs Geoinf. 2016;45:84–94. https://doi.org/10.1016/j.jag.2015.11.002.

    Article  Google Scholar 

  149. • Parks SA, Holsinger LM, Koontz MJ, Collins L, Whitman E, Parisien MA, et al. Giving ecological meaning to satellite-derived fire severity metrics across North American Forests. Remote Sens. 2019;11(14):1735. https://doi.org/10.3390/rs11141735Ecological interpretation of fire severity products based on RS data analysis.

    Article  Google Scholar 

  150. Hoffman KM, Trant AJ, Nijland W, Starzomski BM. Ecological legacies of fire detected using plot-level measurements and LiDAR in an old growth coastal temperate rainforest. For Ecol Manag. 2018;424:11–20. https://doi.org/10.1016/j.foreco.2018.04.020.

    Article  Google Scholar 

  151. Sato LY, Gomes VCF, Shimabukuro YE, Keller M, Arai E, Nara dos Santos M, et al. Post-fire changes in forest biomass retrieved by airborne LiDAR in Amazonia. Remote Sens. 2016;8(10):839. https://doi.org/10.3390/rs8100839.

    Article  Google Scholar 

  152. Vogeler JC, Yang ZQ, Cohen WB. Mapping post-fire habitat characteristics through the fusion of remote sensing tools. RSE. 2016;173:294–303. https://doi.org/10.1016/j.rse.2015.08.011.

    Article  Google Scholar 

  153. Andela N, van der Werf GR, Kaiser JW, van Leeuwen TT, Wooster MJ, Lehmann CER. Biomass burning fuel consumption dynamics in the tropics and subtropics assessed from satellite. Biogeosciences. 2016;13(12):3717–34. https://doi.org/10.5194/bg-13-3717-2016.

    Article  Google Scholar 

  154. Chen X, Liu YY, Evans JP, Parinussa RM, van Dijk A, Yebra M. Estimating fire severity and carbon emissions over Australian tropical savannahs based on passive microwave satellite observations. IJRS. 2018;39(20):6479–98. https://doi.org/10.1080/01431161.2018.1460507.

    Article  Google Scholar 

  155. De Santis A, Chuvieco E, Vaughan P. Short-term assessment of burn severity using the inversion of PROSPECT and GeoSail models. RSE. 2009;113:126–36.

    Google Scholar 

  156. •• Chu T, Guo X. Remote sensing techniques in monitoring post-fire effects and patterns of forest recovery in Boreal forest regions: a review. Remote Sens. 2014;6(1):470 Review of papers on vegetation recovery after fire.

    Google Scholar 

  157. Bartels SF, Chen HYH, Wulder MA, White JC. Trends in post-disturbance recovery rates of Canada’s forests following wildfire and harvest. For Ecol Manag. 2016;361:194–207. https://doi.org/10.1016/j.foreco.2015.11.015.

    Article  Google Scholar 

  158. Kennedy RE, Andrefouet S, Cohen WB, Gomez C, Griffiths P, Hais M, et al. Bringing an ecological view of change to Landsat-based remote sensing. Front Ecol Environ. 2014;12(6):339–46. https://doi.org/10.1890/130066.

    Article  Google Scholar 

  159. Bright BC, Hudak AT, Kennedy RE, Braaten JD, Khalyani AH. Examining post-fire vegetation recovery with Landsat time series analysis in three western North American forest types. Fire Ecol. 2019;15:Unsp 8. https://doi.org/10.1186/s42408-018-0021-9.

  160. Ireland G, Petropoulos GP. Exploring the relationships between post-fire vegetation regeneration dynamics, topography and burn severity: a case study from the montane cordillera Ecozones of Western Canada. Appl Geogr. 2015;56:232–48. https://doi.org/10.1016/j.apgeog.2014.11.016.

  161. Meng R, Dennison PE, D'Antonio CM, Moritz MA. Remote sensing analysis of vegetation recovery following short-interval fires in Southern California shrublands. PLoS One. 2014;9(10):e110637. https://doi.org/10.1371/journal.pone.0110637.

    Article  CAS  Google Scholar 

  162. Gordon CE, Price OF, Tasker EM. Mapping and exploring variation in post-fire vegetation recovery following mixed severity wildfire using airborne LiDAR. Ecol Appl. 2017;27(5):1618–32. https://doi.org/10.1002/eap.1555/full.

    Article  Google Scholar 

  163. Li XD, Zhang HY, Yang GB, Ding YL, Zhao JJ. Post-fire vegetation succession and surface energy fluxes derived from remote sensing. Remote Sens. 2018;10(7):1000. https://doi.org/10.3390/rs10071000.

    Article  Google Scholar 

  164. Shvetsov EG, Kukavskaya EA, Buryak LV, Barrett K. Assessment of post-fire vegetation recovery in Southern Siberia using remote sensing observations. Environ Res Lett. 2019;14(5):055001. https://doi.org/10.1088/1748-9326/ab083d.

  165. Lydersen JM, North MP, Collins BM. Severity of an uncharacteristically large wildfire, the rim fire, in forests with relatively restored frequent fire regimes. For Ecol Manag. 2014;328:326–34. https://doi.org/10.1016/j.foreco.2014.06.005.

    Article  Google Scholar 

  166. Fang L, Crocker EV, Yang J, Yan Y, Yang YZ, Liu ZH. Competition and burn severity determine post-fire sapling recovery in a nationally protected Boreal forest of China: an analysis from very high-resolution satellite imagery. Remote Sens. 2019;11(6):603. https://doi.org/10.3390/rs11060603.

    Article  Google Scholar 

  167. Christopoulou A, Mallinis G, Vassilakis E, Farangitakis GP, Fyllas NM, Kokkoris GD, et al. Assessing the impact of different landscape features on post-fire forest recovery with multitemporal remote sensing data: the case of Mount Taygetos (southern Greece). Int J Wildland Fire. 2019;28(7):521–32. https://doi.org/10.1071/wf18153.

    Article  Google Scholar 

  168. Hirschmugl M, Gallaun H, Dees M, Datta P, Deutscher J, Koutsias N, et al. Methods for mapping forest disturbance and degradation from optical earth observation data: a review. Curr For Rep. 2017;3(1):32–45. https://doi.org/10.1007/s40725-017-0047-2.

    Article  Google Scholar 

  169. Zhao FR, Meng R, Huang CQ, Zhao MS, Zhao FA, Gong P, et al. Long-term post-disturbance forest recovery in the greater yellowstone ecosystem analyzed using Landsat time series stack. Remote Sens. 2016;8(11):Unsp 898. https://doi.org/10.3390/rs8110898.

    Article  Google Scholar 

  170. Zhu Z, Woodcock CE. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens Environ. 2014;144:152–71. https://doi.org/10.1016/j.rse.2014.01.011.

    Article  Google Scholar 

  171. Hermosilla T, Wulder MA, White JC, Coops NC, Hobart GW. Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics. Remote Sens Environ. 2015;170:121–32. https://doi.org/10.1016/j.rse.2015.09.004.

    Article  Google Scholar 

  172. • White JC, Wulder MA, Hermosilla T, Coops NC, Hobart GW. A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sens Environ. 2017;194:303–21. https://doi.org/10.1016/j.rse.2017.03.035National-scale analysis of fire disturbances based on multitemporal RS images.

    Article  Google Scholar 

  173. Griffiths P, Kuemmerle T, Baumann M, Radeloff VC, Abrudan IV, Lieskovsky J, et al. Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites. Remote Sens Environ. 2014;151:72–88. https://doi.org/10.1016/j.rse.2013.04.022.

    Article  Google Scholar 

  174. Frazier RJ, Coops NC, Wulder MA, Hermosilla T, White JC. Analyzing spatial and temporal variability in short-term rates of post-fire vegetation return from Landsat time series. Remote Sens Environ. 2018;205:32–45. https://doi.org/10.1016/j.rse.2017.11.007.

    Article  Google Scholar 

  175. Kennedy RE, Yang Z, Gorelick N, Braaten J, Cavalcante L, Cohen WB, et al. Implementation of the LandTrendr Algorithm on Google Earth Engine. Remote Sens. 2018;10(5):691. https://doi.org/10.3390/rs10050691.

    Article  Google Scholar 

  176. Hughes MJ, Kaylor SD, Hayes DJ. Patch-based forest change detection from Landsat time series. Forests. 2017;8(5):166. https://doi.org/10.3390/f8050166.

    Article  Google Scholar 

  177. Frazier RJ, Coops NC, Wulder MA. Boreal shield forest disturbance and recovery trends using Landsat time series. Remote Sens Environ. 2015;170:317–27. https://doi.org/10.1016/j.rse.2015.09.015.

    Article  Google Scholar 

  178. Morresi D, Vitali A, Urbinati C, Garbarino M. Forest spectral recovery and regeneration dynamics in stand-replacing wildfires of Central Apennines derived from Landsat time series. Remote Sens. 2019;11(3):308. https://doi.org/10.3390/rs11030308.

    Article  Google Scholar 

  179. Storey EA, Stow DA, O'Leary JF. Assessing postfire recovery of chamise chaparral using multi-temporal spectral vegetation index trajectories derived from Landsat imagery. Remote Sens Environ. 2016;183:53–64. https://doi.org/10.1016/j.rse.2016.05.018.

    Article  Google Scholar 

  180. Hermosilla T, Wulder MA, White JC, Coops NC, Hobart GW, Campbell LB. Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring. International Journal of Digital Earth. 2016;9(11):1035–54. https://doi.org/10.1080/17538947.2016.1187673.

    Article  Google Scholar 

  181. Massetti A, Rüdiger C, Yebra M, Hilton J. The vegetation structure perpendicular index (VSPI): a forest condition index for wildfire predictions. RSE. 2019;224:167–81. https://doi.org/10.1016/j.rse.2019.02.004.

    Article  Google Scholar 

  182. Hislop S, Jones S, Soto-Berelov M, Skidmore A, Haywood A, Nguyen TH. Using Landsat spectral indices in time-aeries to assess wildfire disturbance and recovery. Remote Sens. 2018;10(3):460. https://doi.org/10.3390/rs10030460.

    Article  Google Scholar 

  183. Ryu JH, Han KS, Hong S, Park NW, Lee YW, Cho J. Satellite-based evaluation of the post-fire recovery process from the worst forest fire case in South Korea. Remote Sens. 2018;10(6):918. https://doi.org/10.3390/rs10060918.

    Article  Google Scholar 

  184. Joao T, Joao G, Bruno M, Joao H. Indicator-based assessment of post-fire recovery dynamics using satellite NDVI time-series. Ecol Indic. 2018;89:199–212. https://doi.org/10.1016/j.ecolind.2018.02.008.

    Article  Google Scholar 

  185. Matasci G, Hermosilla T, Wulder MA, White JC, Coops NC, Hobart GW, et al. Three decades of forest structural dynamics over Canada’s forested ecosystems using Landsat time-series and Lidar plots. Remote Sens Environ. 2018;216:697–714. https://doi.org/10.1016/j.rse.2018.07.024.

    Article  Google Scholar 

  186. Chen W, Jiang HZ, Moriya K, Sakai T, Cao CX. Monitoring of post-fire forest regeneration under different restoration treatments based on ALOS/PALSAR data. New For. 2018;49(1):105–21. https://doi.org/10.1007/s11056-017-9608-2.

    Article  Google Scholar 

  187. • Polychronaki A, Gitas IZ, Minchella A. Monitoring post-fire vegetation recovery in the Mediterranean using SPOT and ERS imagery. Int J Wildland Fire. 2014;23(5):631–42. https://doi.org/10.1071/wf12058Analysis of post-fire vegetation trends from satellite imagery.

    Article  Google Scholar 

Download references

Funding

No funding was received for this particular review, but support research was funded by the European Space Agency’s Climate Change Initiative Programme to Dr. Chuvieco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Chuvieco.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Fire Management

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuvieco, E., Aguado, I., Salas, J. et al. Satellite Remote Sensing Contributions to Wildland Fire Science and Management. Curr Forestry Rep 6, 81–96 (2020). https://doi.org/10.1007/s40725-020-00116-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40725-020-00116-5

Keywords

Navigation