Skip to main content
Log in

Relating Hydrological and Meteorological Drought Indices in Order to Identify Causes of low Flows in the Catchment of Blanice River

  • Original Article
  • Published:
Environmental Processes Aims and scope Submit manuscript

Abstract

The relationship between meteorological and hydrological drought is in focus in the catchment of Blanice River (Central Bohemia Region, South Bohemia Region). Drought indices used in and presented are the Standardized Precipitation Index (SPI) and the Streamflow Drought Index (SDI). Drought was first analyzed from both the meteorological and hydrological point of view, and then the indices were compared in order to identify the importance of preceding period length in the occurrence of hydrological drought. The total area of the catchment is 534 km2 and is located 50 km southeast of Prague. For the assessment of drought, data from one hydrological gauging station and from a number of meteorological stations were used. The time series used are more than 50 years long. The analyses of precipitation data carried out were supported by GIS application in order to get areal precipitation data based on available station data. Drought indices were calculated on the basis of data for the entire period; however, the analysis of the relationship between SDI and SPI covers only the period from 1961 to 2015 for which the values were available for both considered indices. The results of performed analyses show the correlation between hydrological and meteorological drought indices which is strongest for the reference periods from 3 to 6 months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Faraj FA, Scholz M, Tigkas D (2014) Sensitivity of surface runoff to drought and climate change: application for shared river basins. Water 6(10):3033–3048

    Article  Google Scholar 

  • Al-Faraj FA, Tigkas D (2016) Impacts of multi-year droughts and upstream human-induced activities on the development of a semi-arid transboundary basin. Water Resour Manag 30(14):5131–5143

    Article  Google Scholar 

  • Bates BC, Kundzevic ZW, Wu S, Paultikof JP (eds) (2008) Climate change and water. IPCC technical paper IV. IPCC Secretariat, Geneva

    Google Scholar 

  • Ben-Zvi A (1987) Indices of hydrological drought in Israel. J Hydrol 92(1–2):179–191

    Article  Google Scholar 

  • Bordi I, Fraedrich K, Jiang M, Sutera A (2004) Spatio-temporal variability of dry and wet periods in eastern China. Theor Appl Climatol 79:81–91

    Article  Google Scholar 

  • Brázdil R, Trnka M, Dobrovolný P, Chromá K, Hlavinka P, Žalud Z (2009) Variability of droughts in the Czech Republic, 1881-2006. Theor Appl Climatol 97:297–315

    Article  Google Scholar 

  • Daňhelka J, Boháč M, Crhová L, Čekal R, Černá L, Fiala R, Chuchma F, Kohut M, Kourková H, Kubát J, Kukla P, Kulhavá R, Možný M, Reitschläger JD, Sandev M, Sřivánková P, Šercl P, Štepánek M, Valeriánová A, Vlnas R, Vrabec M, Vráblík M, Zahradníček P, Zrzavecký M (2015) Vyhodnocení sucha na území České republiky v roce 2015 - Předběžná zpráva (The evaluation of drought in the area of Czech Republic in 2015 – Prelimnary report). CHMI, Prague

    Google Scholar 

  • David V, Davidova T (2015a) Analysis of available retention volume in extinct ponds–case study for Blanice River catchment. Agric Agric Sci Procedia 4:79–87

    Article  Google Scholar 

  • David V, Davidova T (2015b) Identification and frequency analysis of drought events in the Blanice river catchment (Czech Republic) in: Andreu J, Solera A, Paredes-Arquiola J, Haro-Monteagudo D, van Lanen H (Eds.). Drought: research and science-policy interfacing. CRC press, pp. 177-182

  • David V, Davidová T (2016) Assessment of summer drought in 2015 using different indices in the catchment of Blanice River. Procedia Engineering 162:45–55

    Article  Google Scholar 

  • Fiala T, Ouarda TBMJ, Hladny J (2010) Evolution of low flows in the Czech Republic. J Hydrol 393:206–218

    Article  Google Scholar 

  • Gasiorek E, Musial E (2015) Evaluation of the precision of standardized precipitation index (SPI) based on years 1954-1995 in Lodz. Journal of Ecological Engineering 16(4):49–53

    Article  Google Scholar 

  • Giddings L, Soto M, Rutherford BM, Maarouf A (2005) Standardized precipitation index zones for México. Atmosfera 18(1):33–56

    Google Scholar 

  • Gumus V, Algin HM (2016) Meteorological and hydrological drought analysis of the Seyhan− Ceyhan River basins, Turkey. Meteorol Appl 24(1):62–73

    Article  Google Scholar 

  • Guttman NB (1999) Accepting the standardized precipitation index: a calculation algorithm. J Am Water Resour Assoc 35(2):311–322

    Article  Google Scholar 

  • Hayes MJ, Svoboda MD, Wilhite DA, Vanyarkho OV (1999) Monitoring the 1996 drought using the standardized precipitation index. Drought mitigation center faculty publications, paper 31

  • Hisdal H, Stahl K, Tallaksen LM, Demuth S (2001) Have streamflow droughts in Europe become more severe or frequent? Int J Climatol 21(3):317–333

    Article  Google Scholar 

  • Hong X, Guo S, Zhou Y, Xiong L (2015) Uncertainties in assessing hydrological drought using streamflow drought index for the upper Yangtze River basin. Stoch Env Res Risk A 29(4):1235–1247

    Article  Google Scholar 

  • Kazemzadeh M, Malekian A (2016) Spatial characteristics and temporal trends of meteorological and hydrological droughts in northwestern Iran. Nat Hazards 80(1):191–210

    Article  Google Scholar 

  • Karavitis CA, Alexandris S, Tsesmelis DE, Athanasopoulos G (2011) Application of the standardized precipitation index (SPI) in Greece. Water 2:787–805

    Article  Google Scholar 

  • Lake PS (2003) Ecological effects of perturbation by drought in flowing waters. Freshw Biol 48(7):1161–1172

    Article  Google Scholar 

  • Lee Rodgers J, Nicewander WA (1988) Thirteen ways to look at the correlation coefficient. Am Stat 42:59–66

    Article  Google Scholar 

  • Marheb M, Moussa R, Abdallah C, Colin F, Perrin C, Baghdadi N (2016) Hydrological response characteristics of Mediterranean catchments at different time scales: a meta-analysis. Hydrol Sci J 61(14):2520–2539

    Article  Google Scholar 

  • McKee TB, Doeskin NJ, Kieist J (1993) The relationship of drought frequency and duration to time scales. Proc. 8th Conf. On applied climatology, January 17–22, American Meteorological Society, Boston, Massachusetts, 179–184

  • Mishra AK, Singh VP (2011) Drought modeling–a review. J Hydrol 403(1):157–175

    Article  Google Scholar 

  • Nalbantis I, Tsakiris G (2009) Assessment of hydrological drought revisited. Water Resour Manag 23(5):881–897

    Article  Google Scholar 

  • Nguyen V, Li Q, Nguyen L (2017) Drought forecasting using ANFIS - a case study in drought prone area of Vietnam. Paddy Water Environ 1–12. doi:10.1007/s10333-017-0579-x

  • Pearson K (1920) Notes on the history of correlation. Biometrika 13:25–45. doi:10.2307/2331722

    Article  Google Scholar 

  • Potop V, Türkott L, Kožnarová V, Možný M (2010) Drought episodes in the Czech Republic and their potential effects in agriculture. Theor Appl Climatol 99(3–4):373–388

    Article  Google Scholar 

  • Quitt E (1971) Klimatické oblasti Československa. Academia, Studia Geographica 16, GÚ ČSAV v Brně, 73 s

  • Smakthin VU (2001) Low flow hydrology: a review. J Hydrol 240:147–186

    Article  Google Scholar 

  • Tabari H, Nikbakht J, Talaee PH (2013) Hydrological drought assessment in northwestern Iran based on streamflow drought index (SDI). Water Resour Manag 27:137–151

    Article  Google Scholar 

  • Tigkas D, Vangelis H, Tsakiris G (2012) Drought and climatic change impact on streamflow in small watersheds. Sci Total Environ 440:33–41

    Article  Google Scholar 

  • Treml P, Zahrádková S, Hájek O (2015) Vymezení oblastí vysychání vodních toků v ČR (Defining areas of drying up streams in the Czech Republic). In: Rožnovský J, Litschmann T, Středa T, Středová H (eds) Extrémy oběhu vody v krajině

  • Tsakiris G, Nalbantis I, Vangelis H, Verbeiren B, Huysmans M, Tychon B, Jacquemin I, Canters F, Vanderhaegen S, Engelen G, Poelmans L, De Becker P, Batelaan O (2013) A system-based paradigm of drought analysis for operational management. Water Resour Manag 27(15):5281–5297

    Article  Google Scholar 

  • Van Loon AF, Laaha G (2015) Hydrological drought severity explained by climate and catchment characteristics. J Hydrol 526:3–14

    Article  Google Scholar 

  • Vicente-Serrano SM, Beguería S, Lorenzo-Lacruz J, Camarero JJ, López-Moreno JI, Azorin-Molina C, Revuelto J, Morán-Tejeda E, Sanchez-Lorenzo A (2012) Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interact 16(10):1–27

    Article  Google Scholar 

  • Zahrádková S, Hájek O, Treml P, Pařil P, Straka M, Němějcová D, Polášek M, Ondráček P (2015) Hodnocení rizika vysychání drobných vodních toků v České republice. VTEI 2015:4–16

    Google Scholar 

Download references

Acknowledgements

This paper presents the research undertaken within the research project NAZV KUS QJ1620395 “Restoration and building of ponds in forest areas as a part of sustainable water resources management in CZ” funded by Ministry of Agriculture of the Czech Republic. The support is highly acknowledged. A previous version of the paper has been presented in the 2nd EWaS International Conference: “Efficient & Sustainable Water Systems Management toward Worth Living Development”, Chania, Crete, Greece, 1-4 June 2016. Authors are grateful to the reviewers for their useful recommendations and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav David.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

David, V., Davidová, T. Relating Hydrological and Meteorological Drought Indices in Order to Identify Causes of low Flows in the Catchment of Blanice River. Environ. Process. 4 (Suppl 1), 149–161 (2017). https://doi.org/10.1007/s40710-017-0223-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40710-017-0223-1

Keywords

Navigation