Skip to main content

Advertisement

Log in

Efficient removal of colistin A and B in critically ill patients undergoing CVVHDF and sorbent technologies

  • Original Article
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Background

Colistin pharmacokinetics data are scarce regarding patients undergoing renal replacement therapy (RRT), or even absent as in patients treated with sorbent technologies potentially capable of removing colistin by extensive absorption on many polymeric materials.

Methods

Twelve septic shock patients with acute kidney injury (AKI) undergoing RRT [continuous venovenous hemodiafiltration (CVVHDF) n = 7, coupled-plasma filtration adsorption-HF (CPFA-HF) n = 4, hemoperfusion n = 1] treated with colistin methanesulfonate at a dose of 4.5 × 106 U bid were studied. Colistin A (Col-A) and colistin B (Col-B) concentrations on plasma and effluent at time 0, 0.2, 1, 3, 6, 12, 24 and 48 h were determined by the liquid chromatography-tandem mass spectrometry method.

Results

With CVVHDF the sieving coefficient was lower for Col-A, peaked early (0.40 for Col-A at 10 min, and 0.59 for Col-B at 3 h) and declined after 48 h (0.22 and 0.30 for Col-A and Col-B, respectively). Colistin’s filter clearance showed a similar pattern, with the highest clearance value of 18.7 ml/min for Col-B at 1 h. With CPFA-HF after the cartridge the Col-A and Col-B levels were negligible (<0.2 mg/l) or not detectable. The sum of the effluent and cartridge clearances reached values of 30 and 40 ml/min for Col-A and Col-B, respectively. With hemoperfusion the postcartridge concentrations for Col-A and Col-B were about 30 % lower than those determined precartridge.

Conclusions

During CPFA-HF and CVVHDF, the extent of colistin removal is high, and patients should receive an unreduced dosage. However, due to risk of accumulation in long-term administration colistin plasma levels determination is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wareham DW, Bean DC, Khanna P et al (2008) Bloodstream infection due to Acinetobacter spp.: epidemiology, risk factors and impact of multi-drug resistance. Eur J Clin Microbiol Infect Dis 27:607–612

    Article  CAS  PubMed  Google Scholar 

  2. Li J, Nation RL, Turnidge JD, Milne RW, Coulthard K, Rayner CR, Paterson DL (2006) Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect Dis 6:589–601

    Article  CAS  PubMed  Google Scholar 

  3. Falagas ME, Kasiakou SK (2005) Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis 40:1333–1341

    Article  CAS  PubMed  Google Scholar 

  4. Bergen PJ, Landersdorfer CB, Zhang J et al (2012) Pharmacokinetics and pharmacodynamics of ‘old’ polymyxins: what is new? Diagn Microbiol Infect Dis 74:213–223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Koch-Weser J, Sidel VW, Federman EB, Kanarek P, Finer DC, Eaton AE (1970) Adverse effects of sodium colistimethate. Manifestations and specific reaction rates during 317 courses of therapy. Ann Intern Med 72:857–868

    Article  CAS  PubMed  Google Scholar 

  6. Hartzell JD, Neff R, Ake J et al (2009) Nephrotoxicity associated with intravenous colistin (colistimethate sodium) treatment at a tertiary care medical center. Clin Infect Dis 48:1724–1728

    Article  CAS  PubMed  Google Scholar 

  7. Collins JM, Haynes K, Gallagher JC (2013) Emergent renal dysfunction with colistin pharmacotherapy. Pharmacotherapy 33:812–816

    Article  CAS  PubMed  Google Scholar 

  8. Sorlí L, Luque S, Grau S et al (2013) Trough colistin plasma level is an independent risk factor for nephrotoxicity: a prospective observational cohort study. BMC Infect Dis 13:380

    Article  PubMed Central  PubMed  Google Scholar 

  9. Li J, Rayner CR, Nation RL, Deans R et al (2005) Pharmacokinetics of colistin methanesulfonate and colistin in a critically ill patient receiving continuous venovenous hemodiafiltration. Antimicrob Agents Chemother 49:4814–4815

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Marchand S, Frat JP, Petitpas F et al (2010) Removal of colistin during intermittent haemodialysis in two critically ill patients. J Antimicrob Chemother 65:1836–1837

    Article  CAS  PubMed  Google Scholar 

  11. Garonzik SM, Li J, Thamlikitkul V, Paterson DL et al (2011) Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother 55:3284–3294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Healy DP, Sombun AD, Gardner JC et al (2011) Pharmacokinetics of colistin in an adolescent boy with extensive burn injury. J Burn Care Res 32:e7–e11

    Article  PubMed  Google Scholar 

  13. Markou N, Fousteri M, Markantonis SL et al (2012) Colistin pharmacokinetics in intensive care unit patients on continuous venovenous haemodiafiltration: an observational study. J Antimicrob Chemother 67:2459–2462

    Article  CAS  PubMed  Google Scholar 

  14. Karvanen M, Plachouras D, Friberg LE et al (2013) Colistin methanesulfonate and colistin pharmacokinetics in critically ill patients receiving continuous venovenous hemodiafiltration. Antimicrob Agents Chemother 57:668–671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Honore PM, Jacobs R, Lochy S et al (2013) Acute respiratory muscle weakness and apnea in a critically ill patient induced by colistin neurotoxicity: key potential role of hemoadsorption elimination during continuous venovenous hemofiltration. Int J Nephrol Renovasc Dis 6:107–111

    Article  PubMed Central  PubMed  Google Scholar 

  16. Luque S, Sorli L, Li J et al (2014) Effective removal of colistin methanesulphonate and formed colistin during intermittent hemodialysis in a patient infected by polymyxin-only-susceptible Pseudomonas aeruginosa. J Chemother 26:122–124

    Article  CAS  PubMed  Google Scholar 

  17. Ronco C, Inguaggiato P, D’Intini V et al (2003) The role of extracorporeal therapies in sepsis. J Nephrol 16(Suppl 7):S34–S41

    CAS  PubMed  Google Scholar 

  18. Livigni S, Bertolini G, Rossi C, On behalf of GiViTI et al (2014) Efficacy of coupled plasma filtration adsorption (CPFA) in patients with septic shock: a multicenter randomised controlled clinical trial. BMJ Open 4(1):e003536

    Article  PubMed Central  PubMed  Google Scholar 

  19. Cruz DN, Perazella MA, Bellomo R et al (2007) Effectiveness of polymyxin B-immobilized fiber column in sepsis: a systematic review. Crit Care 11(2):R47

    Article  PubMed Central  PubMed  Google Scholar 

  20. Matzke GR, Aronoff GR, Atkinson AJ Jr et al (2011) Drug dosing consideration in patients with acute and chronic kidney disease-a clinical update from kidney disease: improving global outcomes (KDIGO). Kidney Int 80:1122–1137

    Article  CAS  PubMed  Google Scholar 

  21. Leporati M, Bua RO, Mariano F et al (2014) Determination by LC-MS/MS of colistins A and B in plasma and ultrafiltrate from critically ill patients undergoing continuous venovenous hemodiafiltration. Ther Drug Monit 36:182–189

    Article  CAS  PubMed  Google Scholar 

  22. Dellinger RP, Levy MM, Rhodes A et al (2013) Surviving sepsis campaign guidelines committee including the pediatric subgroup. surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 39:165–228

    Article  CAS  PubMed  Google Scholar 

  23. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, Acute Dialysis Quality Initiative workgroup (2004) Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) group. Crit Care 8:R204–R212

    Article  PubMed Central  PubMed  Google Scholar 

  24. Mariano F, Tedeschi L, Morselli M, Stella M, Triolo G (2010) Normal citratemia and metabolic tolerance of citrate anticoagulation for hemodiafiltration in severe septic shock burn patients. Intensive Care Med 36:1735–1743

    Article  CAS  PubMed  Google Scholar 

  25. Mariano F, Tetta C, Stella M, Miletto A, Triolo G (2004) Regional citrate anticoagulation in critically ill patients treated with plasma filtration and adsorption. Blood Purif 22:313–319

    Article  CAS  PubMed  Google Scholar 

  26. Plachouras D, Karvanen M, Friberg LE et al (2009) Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by gram-negative bacteria. Antimicrob Agents Chemother 53:3430–3436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Guideline on bioanalytical method validation (2011). European Medicines Agency. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/08/WC500109686.pdf (553 EMEA/CHMP/EWP/192217/2009)

  28. Schmidt JJ, Hafer C, Clajus C et al (2012) New high-cutoff dialyzer allows improved middle molecule clearance without an increase in albumin loss: a clinical crossover comparison in extended dialysis. Blood Purif 34:246–252

    Article  CAS  PubMed  Google Scholar 

  29. Heilmann K, Keller T (2011) Polysulfone: the development of a membrane for convective therapies. Contrib Nephrol 175:15–26

    Article  PubMed  Google Scholar 

  30. Couet W, Grégoire N, Gobin P et al (2011) Pharmacokinetics of colistin and colistimethate sodium after a single 80-mg intravenous dose of CMS in young healthy volunteers. Clin Pharmacol Ther 89:875–879

    Article  CAS  PubMed  Google Scholar 

  31. Strunk AK, Schmidt JJ, Baroke E, Bode-Böger SM, Martens-Lobenhoffer J, Welte T, Kielstein JT (2014) Single- and multiple-dose pharmacokinetics and total removal of colistin in a patient with acute kidney injury undergoing extended daily dialysis. J Antimicrob Chemother 69:2008 (Epub ahead of print) (PubMed PMID: 24651826)

    Article  CAS  PubMed  Google Scholar 

  32. Harm S, Falkenhagen D, Hartmann J (2014) Endotoxin adsorbents in extracorporeal blood purification: do they fulfill expectations? Int J Artif Organs 37:222–232

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

For this study we did not receive any specific financial support.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Mariano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariano, F., Leporati, M., Carignano, P. et al. Efficient removal of colistin A and B in critically ill patients undergoing CVVHDF and sorbent technologies. J Nephrol 28, 623–631 (2015). https://doi.org/10.1007/s40620-014-0143-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-014-0143-3

Keywords

Navigation