Skip to main content

Advertisement

Log in

Phosphate balance in ESRD: diet, dialysis and binders against the low evident masked pool

Journal of Nephrology Aims and scope Submit manuscript

Abstract

Phosphate metabolism is crucial in the pathophysiology of secondary hyperparathyroidism and vascular calcification. High phosphate levels have been consistently associated with unfavorable outcomes in dialysis patients, but several limitations are still hampering a resolutive definition of the optimal targets of phosphate serum levels to be achieved in this cohort. Nonetheless, hyperphosphatemia is a late marker of phosphate overload in humans. Clinical nephrologists routinely counteract the positive phosphate balance in dialysis patients through nutritional counseling, stronger phosphate removal by dialysis and prescription of phosphate binders. However, the superiority against placebo of phosphate control by diet, dialysis or binders in terms of survival has never been tested in dedicated randomized controlled trials. The present review discusses this conundrum with particular emphasis on the rationale supporting the value of a simultaneous intervention against phosphate overload in dialysis patients via the improvement of dietary intakes, dialysis efficiency and an individualized choice of phosphate binders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. National Kidney Foundation (2003) K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis 42(Suppl 3):S1–S201

    Google Scholar 

  2. KDIGO (2009) Treatment of CKD–MBD targeted at lowering high serum phosphorus and maintaining serum calcium. Kidney Int 76(Suppl 113):S50–S59

    Google Scholar 

  3. Palmer SC, Hayen A, Macaskill P et al (2011) Serum levels of phosphorus, parathyroid hormone, and calcium and risks of death and cardiovascular disease in individuals with chronic kidney disease: a systematic review and meta-analysis. JAMA 305(11):1119–1127

    CAS  PubMed  Google Scholar 

  4. Cirillo M, Ciacci C, de Santo NG (2008) Age renal tubular phosphate reabsorption, and serum phosphate levels in adults. N Engl J Med 359:864–866

    CAS  PubMed  Google Scholar 

  5. Pi M, Quarles D (2013) Novel bone endocrine networks integrating mineral and energy metabolism. Curr Osteoporos Rep 11:391–399

    PubMed Central  PubMed  Google Scholar 

  6. Zhang D, Maalouf NM, Adams-Huet B et al (2014) Effects of sex and postmenopausal estrogen use on serum phosphorus levels: a cross sectional study of the national health and nutrition examination survey (NHANES) 2003–2006. Am J Kidney Dis 63(2):198–205

    CAS  PubMed  Google Scholar 

  7. Cozzolino M, Bruschetta E, Cusi D et al (2012) Phosphate handling in CKD-MBD from stage 3 to dialysis and the three strengths of lanthanum carbonate. Expert Opin Pharmacother 13(16):2337–2353

    CAS  PubMed  Google Scholar 

  8. Uribarri J (2007) Phosphorus homeostasis in normal health and in chronic kidney disease patients with special emphasis on dietary phosphorus intake. Semin Dial 20(4):295–301

    PubMed  Google Scholar 

  9. Kuhlmann M (2010) Phosphate elimination in modalities of hemodialysis and peritoneal dialysis. Blood Purifi 29:137–144

    CAS  Google Scholar 

  10. Allen LH, Wood RJ (1994) Calcium and phosphorus in modern nutrition. In: Shils ME, Olson JA, Shike M (eds) Health and disease, 8th edn. Lea & Febiger, Philadelphia, pp 144–163

    Google Scholar 

  11. Ramirez JA, Emmett M, White MG et al (1986) The absorption of dietary phosphorus and calcium in hemodialysis patients. Kidney Int 30:753–795

    CAS  PubMed  Google Scholar 

  12. Tenenhouse HS (2005) Regulation of phosphate homeostasis by the type IIaNa/phosphate cotransporter. Ann Rev Nutr 25:197–214

    CAS  Google Scholar 

  13. Bernd TJ, Schiavi S, Kumar R et al (2005) “Phosphatonins” and the regulation of phosphorus homeostasis. Am J Physiol Renal Physiol 189:F1170–F1182

    Google Scholar 

  14. Antoniucci DM, Yamashita T, Portale AA (2006) Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J Clin Endocrinol Metab 91:3144–3149

    CAS  PubMed  Google Scholar 

  15. Torres PU, Prie’ D, Molina Blètry V et al (2007) Klotho: an antiaging protein involved in mineral and vitamin D metabolism. Kidney Int 71:730–737

    PubMed  Google Scholar 

  16. Delmez JA, Slatopolsky E (1992) Hyperphosphatemia: its cones-quences and treatment in patients with chronic renal disease. Am J Kidney Dis 19:303–317

    CAS  PubMed  Google Scholar 

  17. Rodriguez M, Almaden Y, Hernandez A, Torres A (1996) Effect of phosphate on the parathyroid gland: direct and indirect? Curr Opin Nephrol Hypertens 5:321–328

    CAS  PubMed  Google Scholar 

  18. Portale AA, Halloran BP, Morris RC Jr (1989) Physiologic regulation of the serum concentration of 1,25-dihydroxy vitamin D by phosphorus in normal men. J Clin Invest 83:1494–1499

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Almaden Y, Canalejo A, Hernandez A et al (1996) Direct effect of phosphorus on PTH secretion from whole rat parathyroid glands in vitro. J Bone Miner Res 11:970–976

    CAS  PubMed  Google Scholar 

  20. Nielsen PK, Feldt-Rasmussen U, Olgaard K (1996) A direct effect in vitro of phosphate on PTH release from bovine parathroid tissue slices but not from dispersed parathyroid cells. Nephrol Dial Transplant 11:1762–1768

    CAS  PubMed  Google Scholar 

  21. Moallem E, Kilav R, Silver J, Naveh-Many T (1998) RNA-protein binding and post-transcriptional regulation of parathyroid hormone gene expression by calcium and phosphate. J Biol Chem 273:5253–5259

    CAS  PubMed  Google Scholar 

  22. Wang Q, Palnitkar S, Parfitt AM (1997) Parathyroid cell proliferation in normal human parathyroid tissue: implications for the pathogenesis of hyperparathyroidism. Clin Endocrinol 46:343–349

    CAS  Google Scholar 

  23. Dusso AS, Pavlopoulos T, Naumovich L et al (2001) p21waf1 and TGF-α mediate dietary phosphate-regulation of parathyroid cell growth. Kidney Int 59:855–865

    CAS  PubMed  Google Scholar 

  24. Kumar V, Bustiin SA, McKay IA (1995) Transforming growth factor alpha. Cell Biol Int 19:373–388

    CAS  PubMed  Google Scholar 

  25. Cozzolino M, Lu Y, Finch J et al (2001) p21WAF1 and TGF-alpha mediate parathyroid growth arrest by vitamin D and high calcium. Kidney Int 60:2109–2117

    CAS  PubMed  Google Scholar 

  26. Wong ST, Winchell LF, McCune BK et al (1989) The TGF-alpha precursor expressed on the cell surface binds to the EGF receptor on adjacent cells, leading to signal transduction. Cell 56:495–500

    CAS  PubMed  Google Scholar 

  27. Gogusev J, Duchambon P, Soermann-Chopard C et al (1996) De novo expression of transforming growth factor-alpha in parathyroid gland tissue of patients with primary or secondary uraemic hyperparathyroidism. Nephrol Dial Transplant 11:2155–2162

    CAS  PubMed  Google Scholar 

  28. Sadler GP, Morgan JM, Jasani B et al (1996) Epidermal growth factor receptor status in hyperparathyroidism: immunocytochemical and in situ hybridization study. World J Surg 20:736–743

    CAS  PubMed  Google Scholar 

  29. Dusso A, Cozzolino M, Lu Y et al (2004) 1,25-Dihydroxy vitamin D downregulation of TGF alpha/EGFR expression and growth signaling: a mechanism for the antiproliferative actions of the sterol in parathyroid hyperplasia of renal failure. J Steroid Biochem Mol Biol 89–90:507–511

    PubMed  Google Scholar 

  30. Cozzolino M, Lu Y, Sato T et al (2005) A critical role for enhanced-TGF alpha and EGFR expression in the initiation of parathyroid hyperplasia in experimental renal disease. Am J Physiol Renal Physiol 289(5):F1096–F1102

    CAS  PubMed  Google Scholar 

  31. Levin A, Bakris GL, Molitch M et al (2007) Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int 71:31–38

    CAS  PubMed  Google Scholar 

  32. Isakova T, Wahl P, Vargas GS et al (2011) Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 79(12):1370–1378

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Martin KJ, Gonzàlez EA (2011) Prevention and control of phosphate retention/hyperphosphatemia in CKD-MBD: what Is normal, when to start, and how to treat? Clin J Am Soc Nephrol 6:440–446

    PubMed  Google Scholar 

  34. Cozzolino M, Brancaccio D, Gallieni M, Slatopolsky E (2005) Pathogenesis of vascular calcification in chronic kidney disease. Kidney Int 68(2):429–436

    CAS  PubMed  Google Scholar 

  35. Messa PG, Cerutti R, Brezzi B et al (2009) Calcium and phosphate control by dialysis treatments. Blood Purif 27(4):360–368

    CAS  PubMed  Google Scholar 

  36. Cozzolino M, Ciceri P, Volpi EM et al (2009) Pathophysiology of calcium and phosphate metabolism impairment in chronic kidney disease. Blood Purif 27(4):338–344

    CAS  PubMed  Google Scholar 

  37. Cozzolino M, Mazzaferro S, Pugliese F, Brancaccio D (2008) Vascular calcification and uremia: what do we know? Am J Nephrol 28:339–346

    PubMed  Google Scholar 

  38. Wei T, Wang M, Wang M, Gan LY, Li X (2009) Relationship of sRANKL level and vascular calcification score to cardiovascular events in maintenance hemodialysis patients. Blood Purif 28(4):342–345

    CAS  PubMed  Google Scholar 

  39. Cozzolino M (2009) Emerging roles for osteoprotegerin and receptor activator of nuclear factor-kB in the vascular system. Blood Purif 28:346–347

    PubMed  Google Scholar 

  40. Jono S, McKee MD, Murry CE et al (2000) Phosphate regulation of vascular smooth muscle cell calcification. Circ Res 87:E10–E17

    CAS  PubMed  Google Scholar 

  41. Ducy P, Zhang R, Geoffroy V et al (1997) Osf2/Cbfa1 a transcriptional activator of osteoblast differentiation. Cell 89:747–754

    CAS  PubMed  Google Scholar 

  42. Chen NX, O’Neill KD, Duan D, Moe SM (2002) Phosphorus and uremic serum up-regulate osteopontin expression in vascular smooth muscle cells. Kidney Int 62:1724–1731

    CAS  PubMed  Google Scholar 

  43. Moe SM, Duan D, Doehle BP et al (2003) Uremia induces the osteoblast differentiation factor Cbfa1 in human blood vessels. Kidney Int 63:1003–1011

    CAS  PubMed  Google Scholar 

  44. Wang AY, Lam CW, Wang M et al (2005) Associations of serum fetuin-A with malnutrition, inflammation, atherosclerosis and valvular calcification syndrome and outcome in peritoneal dialysis patients. Nephrol Dial Transplant 20:1676–1685

    CAS  PubMed  Google Scholar 

  45. Galassi A, Spiegel DM, Bellasi A et al (2006) Accelerated vascular calcification and relative hypoparathyroidism in incident haemodialysis diabetic patients receiving calcium binders. Nephrol Dial Transplant 21(11):3215–3222

    CAS  PubMed  Google Scholar 

  46. Matsuoka M, Iseki K, Tamashiro M et al (2004) Impact of high coronary artery calcification score (CACS) on survival in patients on chronic hemodialysis. Clin Exp Nephrol 8:54–58

    PubMed  Google Scholar 

  47. Block GA, Raggi P, Bellasi A et al (2007) Mortality effect of coronary calcification and phosphate binder choice in incident hemodialysis patients. Kidney Int 71:438–441

    CAS  PubMed  Google Scholar 

  48. Blacher J, Guerin AP, Pannier B et al (2001) Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease. Hypertension 38:938–942

    CAS  PubMed  Google Scholar 

  49. Adragao T, Pires A, Lucas C et al (2004) A simple vascular calcification score predicts cardiovascular risk in haemodialysis patients. Nephrol Dial Tranplant 19:1480–1488

    Google Scholar 

  50. Wang AY, Wang M, Woo J et al (2003) Cardiac valve calcification as an important predictor for all-cause mortality and cardiovascular mortality in long-term peritoneal dialysis patients: a prospective study. J Am Soc Nephrol 14(1):159–168

    PubMed  Google Scholar 

  51. di Iorio B, Bellasi A, Russo D (2012) Mortality in kidney disease patients treated with phosphate binders: a randomized study. Clin J Am Soc Nephrol 7(3):487–493

    PubMed  Google Scholar 

  52. di Iorio B, Moloni D, Bell C et al (2013) Sevelamer versus calcium carbonate in incident hemodialysis patients: results of an open-label 24-month randomized clinical trial. Am J Kidney Dis 62(4):771–778

    PubMed  Google Scholar 

  53. Suki WN, Zabaneh R, Cangiano JL et al (2007) Effects of sevelamer and calcium-based phosphate binders on mortality in hemodialysis patients. Kidney Int 72(9):1130–1137

    CAS  PubMed  Google Scholar 

  54. Raggi P, Chertow GM, Torres PU et al (2011) The advance study: a randomized study to evaluate the effects of cinacalcet plus low-dose vitamin D on vascular calcification in patients on hemodialysis. Nephrol Dial Transplant 26(4):1327–1339

    CAS  PubMed  Google Scholar 

  55. Jamal SA, Vandermeer B, Raggi P et al (2013) Effect of calcium-based versus non-calcium-based phosphate binders on mortality in patients with chronic kidney disease: an updated systematic review and meta-analysis. Lancet 382:1268–1277

    CAS  PubMed  Google Scholar 

  56. Chertow GM, Block GA, Correa-Rotter R et al (2012) Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N Engl J Med 367(26):2482–2494

    CAS  PubMed  Google Scholar 

  57. Aparicio M, Bellizzi V, Chauveau P et al (2013) Do ketoanalogues still have a role in delaying dialysis initiation in CKD predialysis atients? Semin Dial 26(6):714–719

    PubMed  Google Scholar 

  58. Kumar R (2009) Phosphate sensing. Curr Opin Nephrol Hypertens 18:281–284

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Berns JS (2008) Niacin and related compounds for treating hyperphosphatemia in dialysis patients. Semin Dial 21:203–205

    PubMed  Google Scholar 

  60. Moe SM, Zidehsarai MP, Chambers MA et al (2011) Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin J Am Soc Nephrol. 6(2):257–264

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Boaz M, Smetana S (1996) Regression equation predicts dietary phosphorus intake from estimate of dietary protein intake. J Am Diet Assoc 96:1268–1270

    CAS  PubMed  Google Scholar 

  62. Noori N, Kalantar-Zadeh K, Kovesdy CP et al (2010) Association of dietary phosphorus intake and phosphorus to protein ratio with mortality in hemodialysis patients. Clin J Am Soc Nephrol 5:683–692

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Cupisti A, D’Alessandro C (2011) The impact of known and unknown dietary components to phosphorus intake. G Ital Nefrol 28(3):278–288

    PubMed  Google Scholar 

  64. Bohn L, Meyer AS, Rasmussen SK (2008) Phytate: impact on environment and human nutrition—A challenge for molecular breeding. J Zhejiang Univ Sci B 9:165–191

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Cupisti A, Kalantar-Zadeh K (2013) Management of natural and added dietary phosphorus burden in kidney disease. Semin Nephrol 33(2):180–190

    CAS  PubMed  Google Scholar 

  66. Barsotti G, Cupisti A (2005) The role of dietary phosphorus restriction in the conservative management of chronic renal disease. J Ren Nutr 15:189–192

    PubMed  Google Scholar 

  67. Fouque D, Vennegoor M, ter Wee P et al (2007) EBPG guideline on nutrition. Nephrol Dial Transplant 22(Suppl 2):45–87

    Google Scholar 

  68. Cupisti A, Morelli E, D’Alessandro C, Lupetti S, Barsotti G (2003) Phosphate control in chronic uremia: don’t forget diet. J Nephrol 16:29–33

    CAS  PubMed  Google Scholar 

  69. Kalantar-Zadeh K, Gutekunst L, Mehrotra R et al (2010) Understanding sources of dietary phosphorus in the treatment of patients with chronic kidney disease. Clin J Am Soc Nephrol 5:519–530

    CAS  PubMed  Google Scholar 

  70. Sherman RA, Mehta O (2009) Dietary phosphorus in dialysis patients: potential impact of processed meat, poultry, and fish products as protein sources. Am J Kidney Dis 54:18–23

    CAS  PubMed  Google Scholar 

  71. Benini O, D’Alessandro C, Gianfaldoni D, Cupisti A (2011) Extra-phosphate load from food additives in commonly eaten foods: a renal and insidious danger for renal patients. J Ren Nutr 21:303–308

    CAS  PubMed  Google Scholar 

  72. Cupisti A, Benini O, Ferretti V et al (2012) Novel differential measurement of natural and added phosphorus in cooked ham with or without preservatives. J Ren Nutr 22(6):533–540

    CAS  PubMed  Google Scholar 

  73. León JB, Sullivan CM, Sehgal AR (2013) The prevalence of phosphorus-containing food additives in top-selling foods in grocery stores. J Ren Nutr. 23(4):265–270

    PubMed Central  PubMed  Google Scholar 

  74. Carrigan A, Klinger A, Choquette SS, Luzuriaga-McPherson A, Bell EK, Darnell B, Gutiérrez OM (2014) Contribution of food additives to sodium and phosphorus content of diets rich in processed foods. J Ren Nutr. 24(1):13–19

    CAS  PubMed  Google Scholar 

  75. Daugirdas JT, Finn WF, Emmett M et al (2011) Frequent hemodialysis network trial group. The phosphate binder equivalent dose. Semin Dial 24(1):41–49

    PubMed  Google Scholar 

  76. Gutiérrez OM, Anderson C, Isakova T (2010) Low socioeconomic status associates with higher serum phosphate irrespective of race. J Am Soc Nephrol 21:1953–1960

    PubMed Central  PubMed  Google Scholar 

  77. Jones WL (2001) Demineralization of a wide variety of foods for the renal patient. J Ren Nutr 11:90–96

    CAS  PubMed  Google Scholar 

  78. Cupisti A, Comar F, Benini O et al (2006) Effect of boiling on dietary phosphate and nitrogen intake. J Ren Nutr 16:36–40

    PubMed  Google Scholar 

  79. Cupisti A, Ferretti V, D’Alessandro C et al (2012) Nutritional knowledge in hemodialysis patients and nurses: focus on phosphorus. J Ren Nutr. 22(6):541–546

    CAS  PubMed  Google Scholar 

  80. Sullivan C, Sayre SS, Leon JB et al (2009) Effect of food additives on hyperphosphatemia among patients with end-stage renal disease: a randomized controlled trial. JAMA 301:629–635

    CAS  PubMed  Google Scholar 

  81. Caldeira D, Amaral T, David C et al (2011) Educational strategies to reduce serum phosphorus in hyperphosphatemic patients with chronic kidney disease: systematic review with meta-analysis. J Ren Nutr. 21(4):285–294

    PubMed  Google Scholar 

  82. Tonelli M (2013) Serum phosphorus in people with chronic kidney disease: you are what you eat. Kidney Int 84(5):871–873

    CAS  PubMed  Google Scholar 

  83. Kalantar-Zadeh K, Kuwae N, Regidor DL, Kovesdy CP et al (2006) Survival predictability of time-varying indicators of bone disease in maintenance hemodialysis patients. Kidney Int 70:771–780

    CAS  PubMed  Google Scholar 

  84. Kuhlmann M (2010) Phosphate elimination in modalities of hemodialysis and peritoneal dialysis. Blood Purif 29:137–144

    CAS  PubMed  Google Scholar 

  85. Gotch FA, Panlilio F, Sergeyeva O et al (2003) A kinetic model of inorganic phosphorus mass balance in hemodialysis therapy. Blood Purif 21:51–57

    CAS  PubMed  Google Scholar 

  86. Achinher SG, Ayus JC (2005) The role of daily dialysis in the control of hyperphosphatemia. Kideny Int Suppl 95:S28–S32

    Google Scholar 

  87. Kjellstrand CM, Ing TS, Kjellstrand PT et al (2011) Phosphorus dynamics during hemodialysis. Hemodial Int 15(2):226–233

    PubMed  Google Scholar 

  88. Mucsi I, Hercz G, Uldall R et al (1998) Control of serum phosphate without any phosphate binders in patients treated with nocturnal hemodialysis. Kideny Int 53:1399–1404

    CAS  Google Scholar 

  89. Ok E, Duman S, Asci G et al (2011) Comparison of 4- and 8-h dialysis sessions in thrice-weekly in-center haemodialysis. Nephrol Dial Transplant 26:1287–1296

    PubMed  Google Scholar 

  90. Minutolo R, Bellizzi V, Cioffi M et al (2002) Postdialytic rebound of serum phosphorus: pathogentic and clinical insights. J Am Soc Nephrol 13:1046–1054

    CAS  PubMed  Google Scholar 

  91. Pedrini LA, de Cristofaro V, Comelli M et al (2011) Long-term effects of high-efficiency of haemodialfiltration on uraemic toxicity. A multicentre prospective randomized study. Nephrol Dial Transplant 26(8):2617–2624

    CAS  PubMed  Google Scholar 

  92. Movilli E, Camerini C, Gaggia P et al (2011) Effect of post-dilutional on-line haemodiafiltration on serum calcium, phosphate and parathyroid hormone concentrations in uraemic patients. Nephrol Dial Transplant 26(12):4032–4037

    CAS  PubMed  Google Scholar 

  93. Davenport A, Gardner C, Delaney M et al (2010) The effect of dialysis modality on phosphate control : haemodialysis compared to haemodiafiltration. The pan thames renal audit. Nephrol Dial Transplant 25(3):897–901

    CAS  PubMed  Google Scholar 

  94. Oates T, Pinney JH, Davenport A (2011) Haemodiafiltration versus high-flux haemodialysis: effects on phosphate control and erythropoietin response. Am J Nephrol 33(1):70–75

    CAS  PubMed  Google Scholar 

  95. Penne EL, van der Weerd NC, van den Dorpel MA et al (2010) Short-term effects of online hemodiafiltration on phosphate control: a result from the randomized controlled convective transport study (contrast). Am J Kidney Dis 55(1):77–87

    CAS  PubMed  Google Scholar 

  96. Susantitaphong P, Siribamrungwong M, Jaber BL (2013) Convective therapies versus low-flux hemodialysis for chronic kidney failure: a meta-analysis of randomized controlled trials. Nephrol Dial Transplant 28(11):2859–2874

    CAS  PubMed  Google Scholar 

  97. Maduell F, Moreso F, Pons M et al (2013) High-efficiency postdilution online hemodiafiltration reduces all-cause mortality in hemodialysis patients. J Am Soc Nephrol 24(3):487–497

    PubMed Central  PubMed  Google Scholar 

  98. Locatelli F, Altieri P, Andrulli S et al (2014) Phosphate levels in patients treated with low-flux haemodialysis, pre-dilution haemofiltration and haemodiafiltration: post hoc analysis of a multicentre, randomized and controlled trial. Nephrol Dial Transplant 29:1239–1246

    CAS  PubMed  Google Scholar 

  99. Isakova T, Gutiérrez OM, Chang Y et al (2009) Phosphorus binders and survival on hemodialysis. J Am Soc Nephrol 20(2):388–396

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Russo D, Miranda I, Ruocco C et al (2007) The progression of coronary artery calcification in predialysis patients on calcium carbonate or sevelamer. Kidney Int 72(10):1255–1261

    CAS  PubMed  Google Scholar 

  101. Block GA, Spiegel DM, Ehrlich J et al (2005) Effects of sevelamer and calcium on coronary artery calcification in patients new to hemodialysis. Kidney Int 68(4):1815–1824

    CAS  PubMed  Google Scholar 

  102. Toussaint ND, Lau KK, Polkinghorne KR et al (2011) Attenuation of aortic calcification with lanthanum carbonate versus calcium-based phosphate binders in haemodialysis: a pilot randomized controlled trial. Nephrology (Carlton) 16(3):290–298

    CAS  Google Scholar 

  103. Chiu YW, Teitelbaum I, Misra M et al (2009) Pill burden, adherence, hyperphosphatemia, and quality of life in maintenance dialysis patients. Clin J Am Soc Nephrol 4(6):1089–1096

    PubMed Central  PubMed  Google Scholar 

  104. Martin P, Wang P, Robinson A et al (2011) Comparison of dietary phosphate absorption after single doses of lanthanum carbonate and sevelamer carbonate in healthy volunteers: a balance study. Am J Kidney Dis 57(5):700–706

    CAS  PubMed  Google Scholar 

  105. Sprague SM, Ross EA, Nath SD et al (2009) Lanthanum carbonate vs. sevelamer hydrochloride for the reduction of serum phosphorus in hemodialysis patients: a crossover study. Clin Nephrol 72(4):252–258

    CAS  PubMed  Google Scholar 

  106. Noto L (2011) Lanthanum carbonate provides control of phosphorus levels in patients new to phosphate binder therapy and patients changed from other phosphate binders. J Renal Nutr 21(3):277–289

    CAS  Google Scholar 

  107. Chan WL, Rounsley K, Chapman E et al (2010) Lanthanum carbonate is an effective hypophosphatemic agent for hemodialysis patients intolerant of other phosphate binders. J Renal Nutr 20(4):270–277

    CAS  Google Scholar 

  108. Hutchinson A, Laville M (2008) Switching to lanthanum carbonate monotherapy provides effective phosphate control with a low tablet burden. Nephrol Dial Transplant 23:3677–3684

    Google Scholar 

  109. Lloret MJ, Ruiz-García C, Dasilva I et al (2013) Lanthanum carbonate for the control of hyperphosphatemia in chronic renal failure patients: a new oral powder formulation—safety, efficacy, and patient adherence. Patient Prefer Adherence 7:1147–1156

    PubMed Central  PubMed  Google Scholar 

  110. Rastogi A (2013) Sevelamer revisited: pleiotropic effects on endothelial and cardiovascular risk factors in chronic kidney disease and end-stage renal disease. Ther Adv Cardiovasc Dis 7(6):322–342

    CAS  PubMed Central  PubMed  Google Scholar 

  111. de Francisco ALM, Leidig M, Covic AC et al (2010) Evaluation of calcium acetate/magnesium carbonate as a phosphate binder compared with sevelamer hydrochloride in haemodialysis patients: a controlled randomized study (CALMAG study) assessing efficacy and tolerability. Nephrol Dial Transplant 25:3707–3717

    PubMed Central  PubMed  Google Scholar 

  112. Covic A, Passlick-Deetjen J, Kroczak M et al (2013) A comparison of calcium acetate/magnesium carbonate and sevelamer-hydrochloride effects on fibroblast growth factor-23 and bone markers: post hoc evaluation from a controlled randomized study. Nephrol Dial Transplant 28:2383–2392

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Galassi A, Cozzolino M (2014) Magnesium: a renewed player of vascular aging in diabetic CKD patients? Clin Kidney J 7(2):93–96

    PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

A. Galassi has received occasional speaker honoraria by from Shire and Abbvie on occasion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Galassi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galassi, A., Cupisti, A., Santoro, A. et al. Phosphate balance in ESRD: diet, dialysis and binders against the low evident masked pool. J Nephrol 28, 415–429 (2015). https://doi.org/10.1007/s40620-014-0142-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-014-0142-4

Keywords

Navigation