Skip to main content

Advertisement

Log in

Tubular reabsorption of high, middle and low molecular weight proteins according to the tubulo-interstitial damage marker N-acetyl-β-d-glucosaminidase in glomerulonephritis

Journal of Nephrology Aims and scope Submit manuscript

Abstract

Background

Proteinuria, the hallmark of glomerular diseases, is an independent predictor of end-stage renal disease (ESRD) progression. Proteinuria is a mixture of proteins of different molecular weight (MW) dependent on alterations of glomerular filtration barrier (GFB) and reabsorption impairment by proximal tubular epithelial cells (PTECs). We aimed to evaluate the excretion of different-MW proteins according to the tubulo-interstitial damage marker N-acetyl-β-d-glucosaminidase (NAG) in glomerulonephritides (GNs).

Methods

In 189 patients [idiopathic membranous nephropathy (IMN) n = 84, primary focal segmental glomerulosclerosis (FSGS) n = 48, crescentic IgA nephropathy (CIgAN) n = 37, minimal change disease (MCD) n = 20] several urinary proteins were measured at biopsy: α2-macroglobulin/creatinine ratio; fractional excretion of IgG, transferrin, albumin and α1-microglobulin, and the NAG/creatinine ratio divided by estimated glomerular filtration rate (eGFR) (NAG/C/eGFR), as NAG excretion is dependent on functioning nephron mass. Protein excretion was compared between 4th vs. 1st quartile of NAG/C/eGFR.

Results

In IMN, FSGS and CIgAN high-MW proteins excretion (α2-macroglobulin, IgG) was greater than that of middle- (transferrin, albumin) and low-MW proteins (α1-microglobulin) in 4th vs. 1st quartile of NAG/C/eGFR; the mean fold excretion increase of high-MW proteins in 3 GNs was 74.9, higher than that of middle- (34.8) and low-MW proteins (12.0). Higher excretion of high-MW proteins may be dependent on lower reabsorption by PTECs. By contrast, in MCD the difference in excretion of different-MW proteins is probably due to high GFB selectivity.

Conclusion

High-MW protein excretion is dependent on GFB alteration and reduced reabsorption; its prognostic significance is ominous because in several glomerular diseases progression is associated with high-MW protein excretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Cravedi P, Remuzzi G (2013) Pathophysiology of proteinuria and its value as an outcome measure in CKD. Brit J Clin Pharmacol 76:516–523

    Google Scholar 

  2. Haraldsson B, Nystrom J, Deen WM (2008) Properties of the glomerular barrier and mechanisms of proteinuria. Physiol Rev 88:451–480

    Article  CAS  PubMed  Google Scholar 

  3. Lowik MM, Groenen PJ, Levtchenko EN, Monnens LA, van den Heuvel LP (2009) Molecular genetic analysis of podocyte genes in focal segmental glomerulosclerosis—a review. Eur J Pediatr 168:1291–1304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Baines RJ, Brunskill NJ (2011) Tubular toxicity of proteinuria. Nat Rev Nephrol 7:177–180

    Article  CAS  PubMed  Google Scholar 

  5. Saito A, Sato H, Iino N, Takeda T (2010) Molecular mechanisms of receptor-mediated endocytosis in renal proximal tubular epithelium. J Biomed Biotechnol 2010:403272. doi:10.1155/2010/403272

    Article  PubMed Central  PubMed  Google Scholar 

  6. Nakhoul N, Batuman V (2011) Role of proximal tubules in the pathogenesis of kidney disease. Contrib Nephrol 169:37–50

    Article  CAS  PubMed  Google Scholar 

  7. Srorm T, Tranebjaerg L, Frykholm C, Verroust PJ, Neveus T et al (2013) Renal phenotypic investigations of megalin-deficient patients: novel insights into tubular proteinuria and albumin on filtration. Nephrol Dial Transplant 28:585–591

    Article  Google Scholar 

  8. Amsellem S, Gburek J, Hamard G, Nielsen R, Willnow TE et al (2010) Cubilin is essential for albumin reabsorption in the renal proximal tubule. J Am Soc Nephrol 21:1859–1867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Haraldsson B (2010) Tubular reabsorption of albumin: it’s all about cubilin. J Am Soc Nephrol 21:1810–1812

    Article  PubMed  Google Scholar 

  10. Rath T, Kuo TT, Baker K, Qiao SW, Kobayashi K et al (2013) The immunologic functions of the neonatal FC receptor for IgG. J Clin Immunol 33(Suppl 1):S9–S17

    Article  PubMed  Google Scholar 

  11. Baines RJ, Chana RS, Hall M, Febbraio M, Kennedy DJ et al (2012) CD36 mediates proximal tubular binding and uptake of albumin and is up-regulated in proteinuric nephropathies. Am J Physiol Renal Physiol 303:2006–2014

    Article  Google Scholar 

  12. Kobayashi N, Suzuki Y, Tsuge T, Okamura K, Ra C, Tomino Y (2002) FcRn-mediated transcytosis of immunoglobulin G in human renal proximal tubular epithelial cells. Am J Physiol Renal Physiol 282:F358–F365

    Article  PubMed  Google Scholar 

  13. Bazzi C, Petrini C, Rizza V, Arrigo G, Napodano P et al (2002) Urinary N-acetyl-β- glucosaminidase excretion is a marker of tubular cell dysfunction and a predictor of outcome in primary glomerulonephritis. Nephrol Dial Transplant 17:1890–1896

    Article  CAS  PubMed  Google Scholar 

  14. D’Amico G, Bazzi C (2003) Urinary protein and enzyme excretion as markers of tubular damage. Curr Opin Nephrol Hypertens 12:639–643

    Article  PubMed  Google Scholar 

  15. Price RG (1992) The role of NAG (N-acetyl-β-d-glucosaminidase) in the diagnosis of kidney disease including the monitory of nephrotoxicity. Clin Nephrol 38(Suppl):14–19

    Google Scholar 

  16. Bosomworth MP, Aparicio SR, Hay AWM (1999) Urine N-acetyl-β-d-glucosaminidase—a marker of tubular damage? Nephrol Dial Transplant 14:620–626

    Article  CAS  PubMed  Google Scholar 

  17. Mishra OP, Jain P, Srivastava P, Prasad R (2012) Urinary N-acetyl-beta-d- glucosaminidase (NAG) level in idiopathic nephrotic syndrome. Pediatr Nephrol 27:589–596

    Article  PubMed  Google Scholar 

  18. Lisowska-Myjak B, Lrych A, Kolodziejczyk A, Pachecka J, Gaciong Z (2011) Urinary proteins, N-acetyl-β-d-glucosaminidase activity and estimated glomerular filtration rate in hypertensive patients with normoalbuminuria and microalbuminuria. Nephrology (Carlton) 16:403–409

    Article  CAS  Google Scholar 

  19. Hultberg B, Ravnskov U (1981) The excretion of N-acetyl-β-d-glucosaminidase in glomerulonephritis. Clin Nephrol 15:33–38

    CAS  PubMed  Google Scholar 

  20. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd et al (2009) CKD-EPI (chronic kidney disease epidemiology collaboration). A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612

    Article  PubMed Central  PubMed  Google Scholar 

  21. Ellam TJ, El Nahas M (2011) Proteinuria thresholds are irrational: a call for proteinuria indexing. Nephron Clin Pract 118:c217–c224

    Article  CAS  PubMed  Google Scholar 

  22. D’Amico G, Ferrario F, Colasanti G, Ragni A, Bestetti Bosisio M (1981) IgA-mesangial nephropathy (Berger’s disease) with rapid decline in renal function. Clin Nephrol 16:251–257

    PubMed  Google Scholar 

  23. Loeffler I, Wolf G (2014) Transforming growth factor-β and progression of renal disease. Nephrol Dial Transplant 29(Suppl 1):i37–i45

    Article  CAS  PubMed  Google Scholar 

  24. Ruggenenti P, Cravedi P, Remuzzi G (2012) Mechanism and treatment of CKD. J Am Soc Nephrol 23:1917–1928

    Article  CAS  PubMed  Google Scholar 

  25. Nangaku M (2004) Mechanisms of tubulointerstitial injury in the kidney: final common pathways to end-stage renal failure. Intern Med 43:9–17

    Article  CAS  PubMed  Google Scholar 

  26. Nangaku M (2006) Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol 17:17–25

    Article  CAS  PubMed  Google Scholar 

  27. Bazzi C, Petrini C, Rizza V, Arrigo G, D’Amico G (2000) A modern approach to selectivity of proteinuria and tubulo-interstitial damage in nephrotic syndrome. Kidney Int 58:1732–1741

    Article  CAS  PubMed  Google Scholar 

  28. Bakoush O, Tencer J, Tapia J, Rippe B, Torffvit O (2002) Higher urinary IgM excretion in type 2 diabetic nephropathy compared to type 1 diabetic nephropathy. Kidney Int 61:203–208

    Article  CAS  PubMed  Google Scholar 

  29. Tofik R, Torffvit O, Rippe B, Bakoush O (2012) Urine IgM-excretion as a prognostic marker for progression of type 2 diabetic nephropathy. Diabetes Res Clin Pract 95:139–144

    Article  CAS  PubMed  Google Scholar 

  30. Tofik R, Torffvit O, Rippe B, Bakoush O (2009) Increased urine IgM excretion predicts cardiovascular events in patients with type 1 diabetes nephropathy. BMC Med 4:7

    Google Scholar 

  31. Bakoush O, Segelmark M, Torffvit O, Ohlsson S, Tencer J (2006) Urine IgM excretion predicts outcome in ANCA-associated renal vasculitis. Nephrol Dial Transplant 21(1263):1269

    Google Scholar 

  32. Bazzi C, Rizza V, Casellato D, Stivali G, Rachele G et al. (2013) Urinary IgG and α2-macroglobulin are powerful predictors of outcome and responsiveness to steroids and cyclophosphamide in idiopathic focal segmental glomerulosclerosis with nephrotic syndrome. BioMed Res Int 2013:941831. doi:10.1155/2013/941831

    Article  PubMed Central  PubMed  Google Scholar 

  33. Bazzi C, Rizza V, Casellato D, Tofik R, Berg A-L, Gallieni M, D’Amico G, Bakoush O (2014) Fractional excretion of IgG in idiopathic membranous nephropathy with nephrotic syndrome: a predictive marker of risk and drug responsiveness. BMC Nephrol 15:74. doi:10.1186/1471-2369-15-74

    Article  PubMed Central  PubMed  Google Scholar 

  34. Mc Quarrie EP, Shakerdi L, Jardine AG, Fox JG, Mackinnon B (2011) Fractional excretions of albumin and IgG are the best predictors of progression in primary glomerulonephritis. Nephrol Dial Transplant 26:1563–1569

    Article  Google Scholar 

  35. Tofik R, Aziz R, Reda A, Rippe B, Bakoush O (2011) The value of IgG-uria in predicting renal failure in idiopathic glomerular diseases. A long-term follow-up study. Scand J Clin Lab Invest 71:123–128

    CAS  PubMed  Google Scholar 

  36. Bazzi C, Rizza V, Raimondi S, Casellato D, Napodano P et al (2009) In crescentic IgA nephropathy, fractional excretion of IgG in combination with nephron loss is the best predictor of progression and responsiveness to immunosuppression. Clin J Am Soc Nephrol 4(5):929–935

    Article  PubMed Central  PubMed  Google Scholar 

  37. Bazzi C, Rizza V, Casellato D, Stivali G, Rachele G et al (2012) Validation of some pathophysiological mechanisms of the CKD progression theory and outcome prediction in IgA nephropathy. J Nephrol 25:810–818

    Article  PubMed  Google Scholar 

  38. van der Meer IM, Cravedi P, Remuzzi G (2010) The role of renin angiotensin system inhibition in kidney repair. Fibrogenesis Tissue Repair 3:7

    Article  PubMed Central  PubMed  Google Scholar 

  39. Norman JT, Stidwill R, Singer M, Fine LG (2003) Angiotensin II blockade augments renal cortical microvascular pO2 indicating a novel potential renoprotective action. Nephron Physiol 94:39–46

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Bazzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazzi, C., Rizza, V., Olivieri, G. et al. Tubular reabsorption of high, middle and low molecular weight proteins according to the tubulo-interstitial damage marker N-acetyl-β-d-glucosaminidase in glomerulonephritis. J Nephrol 28, 541–548 (2015). https://doi.org/10.1007/s40620-014-0139-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-014-0139-z

Keywords

Navigation