Skip to main content

Advertisement

Log in

Chronotropic incompetence, echocardiographic abnormalities and exercise intolerance in renal transplant recipients

  • Original Article
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Background

Chronotropic incompetence (CI) is an independent predictor of cardiovascular events and overall mortality. The prevalence and significance of CI in renal transplant patient has not been examined.

Methods

38 non-heart failure renal transplant recipients were recruited for a transthoracic echocardiogram and treadmill stress test using the modified Bruce protocol.

Results

15 patients (39.5 %) had CI (defined as failure to reach 85 % of the maximum age-predicted heart rate, or <8 0 % of predicted heart rate reserve). CI patients had higher left ventricular (LV) mass (216.5 ± 56.1 vs. 183.1 ± 40.0 g, p = 0.04), increased septal wall thickness (11.7 ± 1.4 vs. 10.7 ± 1.1 mm, p = 0.03) and posterior wall thickness (10.9 ± 1.9 vs. 9.5 ± 1.7 mm, p = 0.02). At multivariate analysis, CI was associated with elevated serum creatinine [odds ratio (OR) 1.04, p = 0.03] and increased LV mass (OR 1.03, p = 0.03). CI was associated with shorter exercise duration (3.53 ± 2.20 vs. 8.08 ± 2.34 min, p < 0.01) and lower metabolic equivalents (5.40 ± 2.05 vs. 9.82 ± 2.39, p < 0.01). At multivariate analysis, exercise duration was negatively associated with CI (β = −0.54, p < 0.01).

Conclusions

CI is present in approximately 40 % of asymptomatic renal transplant recipients and is associated with reduced exercise tolerance, left ventricular hypertrophy, and worse allograft function .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Brubaker PH, Kitzman DW (2011) Chronotropic incompetence: causes, consequences, and management. Circulation 123(9):1010–1020. doi:10.1161/CIRCULATIONAHA.110.940577

    Article  PubMed Central  PubMed  Google Scholar 

  2. Ellestad MH, Wan MK (1975) Predictive implications of stress testing. Follow-up of 2700 subjects after maximum treadmill stress testing. Circulation 51(2):363–369

    Article  CAS  PubMed  Google Scholar 

  3. Lauer MS, Okin PM, Larson MG, Evans JC, Levy D (1996) Impaired heart rate response to graded exercise. Prognostic implications of chronotropic incompetence in the Framingham Heart Study. Circulation 93(8):1520–1526

    Article  CAS  PubMed  Google Scholar 

  4. Routledge HC, Townend JN (2006) Why does the heart rate response to exercise predict adverse cardiac events? Heart 92(5):577–578. doi:10.1136/hrt.2005.079400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Secundo PF, Santos BF, Secundo Junior JA, da Silva JB, de Souza AR, Faro GB, Barreto-Filho JA, Sousa AC, Oliveira JL (2012) Clinical and echocardiographic parameters associated with low chronotropic index in non-elderly patients. Arq Bras Cardiol 98(5):413–420

    Article  PubMed  Google Scholar 

  6. Lauer MS (2001) Heart rate response in stress testing: clinical implications. ACC Curr J Rev 10:16–19

    Article  Google Scholar 

  7. Azarbal B, Hayes SW, Lewin HC, Hachamovitch R, Cohen I, Berman DS (2004) The incremental prognostic value of percentage of heart rate reserve achieved over myocardial perfusion single-photon emission computed tomography in the prediction of cardiac death and all-cause mortality: superiority over 85% of maximal age-predicted heart rate. J Am Coll Cardiol 44(2):423–430. doi:10.1016/j.jacc.2004.02.060

    Article  PubMed  Google Scholar 

  8. Tsuji H, Larson MG, Venditti FJ Jr, Manders ES, Evans JC, Feldman CL, Levy D (1996) Impact of reduced heart rate variability on risk for cardiac events. The Framingham Heart Study. Circulation 94(11):2850–2855

    Article  CAS  PubMed  Google Scholar 

  9. Tsuji H, Venditti FJ Jr, Manders ES, Evans JC, Larson MG, Feldman CL, Levy D (1994) Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study. Circulation 90(2):878–883

    Article  CAS  PubMed  Google Scholar 

  10. Coquet I, Mousson C, Rifle G, Laurent G, Moreau D, Cottin Y, Zeller M, Touzery C, Wolf JE (2005) Influence of ischemia on heart-rate variability in chronic hemodialysis patients. Ren Fail 27(1):7–12

    Article  PubMed  Google Scholar 

  11. Kurata C, Uehara A, Ishikawa A (2004) Improvement of cardiac sympathetic innervation by renal transplantation. J Nucl Med 45(7):1114–1120

    PubMed  Google Scholar 

  12. Yildiz A, Sever MS, Demirel S, Akkaya V, Turk S, Turkmen A, Ecder T, Ark E (1998) Improvement of uremic autonomic dysfunction after renal transplantation: a heart rate variability study. Nephron 80(1):57–60

    Article  CAS  PubMed  Google Scholar 

  13. Witte KK, Cleland JG, Clark AL (2006) Chronic heart failure, chronotropic incompetence, and the effects of beta blockade. Heart 92(4):481–486. doi:10.1136/hrt.2004.058073

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. American College of Sports Medicine (1986) Guidelines for exercise testing and prescription, 3rd edn. Lea & Febiger, Philadelphia

    Google Scholar 

  15. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57(6):450–458

    Article  CAS  PubMed  Google Scholar 

  16. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise J, Solomon S, Spencer KT, St John Sutton M, Stewart W (2006) Recommendations for chamber quantification. Eur J Echocardiogr 7(2):79–108. doi:10.1016/j.euje.2005.12.014

    Article  PubMed  Google Scholar 

  17. Vita G, Bellinghieri G, Trusso A, Costantino G, Santoro D, Monteleone F, Messina C, Savica V (1999) Uremic autonomic neuropathy studied by spectral analysis of heart rate. Kidney Int 56(1):232–237. doi:10.1046/j.1523-1755.1999.00511.x

    Article  CAS  PubMed  Google Scholar 

  18. Spallone V, Ziegler D, Freeman R, Bernardi L, Frontoni S, Pop-Busui R, Stevens M, Kempler P, Hilsted J, Tesfaye S, Low P, Valensi P (2011) Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev 27(7):639–653. doi:10.1002/dmrr.1239

    Article  Google Scholar 

  19. Sacre JW, Franjic B, Jellis CL, Jenkins C, Coombes JS, Marwick TH (2010) Association of cardiac autonomic neuropathy with subclinical myocardial dysfunction in type 2 diabetes. JACC Cardiovasc Imaging 3(12):1207–1215. doi:10.1016/j.jcmg.2010.09.014

    Article  PubMed  Google Scholar 

  20. Lauer MS, Larson MG, Evans JC, Levy D (1999) Association of left ventricular dilatation and hypertrophy with chronotropic incompetence in the Framingham Heart Study. Am Heart J 137(5):903–909

    Article  CAS  PubMed  Google Scholar 

  21. Lauer MS, Okin PM, Anderson KM, Levy D (1995) Impact of echocardiographic left ventricular mass on mechanistic implications of exercise testing parameters. Am J Cardiol 76(12):952–956

    Article  CAS  Google Scholar 

  22. Brubaker PH, Joo KC, Stewart KP, Fray B, Moore B, Kitzman DW (2006) Chronotropic incompetence and its contribution to exercise intolerance in older heart failure patients. J Cardiopulm Rehabil 26(2):86–89

    Article  PubMed  Google Scholar 

  23. Harron DW, Balnave K, Kinney CD, Wilson R, Russell CJ, Shanks RG (1981) Effects on exercise tachycardia during forty-eight hours of a series of doses of atenolol, sotalol, and metoprolol. Clin Pharmacol Ther 29(3):295–302

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest. Institutional Review Board (IRB)/Ethics Committee approval has been obtained. This study was in adherence with the Declaration of Helsinki and 1. informed consent was obtained from all participants. This study was conducted in adherence to the Declaration of Istanbul.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David Chung Wah Siu or Tak Mao Chan.

Additional information

HKClinicalTrials.com number: HKCTR-1152.

“Maggie Kam Man Ma and Ming Lang Zuo” and “David Chung Wah Siu and Tak Mao Chan” have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M.K.M., Zuo, M.L., Yap, D.Y.H. et al. Chronotropic incompetence, echocardiographic abnormalities and exercise intolerance in renal transplant recipients. J Nephrol 27, 451–456 (2014). https://doi.org/10.1007/s40620-014-0091-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-014-0091-y

Keywords

Navigation