Skip to main content

Advertisement

Log in

Effect of systemic steroid therapy in Graves’ orbitopathy on regulatory T cells and Th17/Treg ratio

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Glucocorticoids are a mainstay treatment for Graves’ orbitopathy, yet their exact mechanisms of action remain unclear. We aimed to determine whether the therapeutic effects of systemic steroid therapy in Graves’ orbitopathy are mediated by changes in regulatory T lymphocytes (Tregs) and T helper 17 lymphocytes (Th17).

Methods

We assessed Treg and Th17 levels in the peripheral blood of 32 patients with active, moderate-to-severe Graves’ orbitopathy who received 12 weekly pulses of methylprednisolone, and determined their association with disease severity, disease activity, and treatment outcomes. The acute orbitopathy phase was confirmed based on clinical evaluation and magnetic resonance imaging, and assessed using the clinical activity score (CAS). The severity of the disease was classified according to ETA/EUGOGO guidelines, and quantified based on the total eye score. Treatment response was determined based on specific criteria (e.g., changes in CAS score, diplopia grade, visual acuity, etc.). Treg and Th17 cells were identified using flow cytometry.

Results

Methylprednisolone treatment improved the activity of the disease and altered the Th17/Treg balance (i.e., the percentage of Tregs decreased while the number of Th17 cells remained unchanged). There was no association between the Treg/Th17 ratio and the activity and severity of the disease or the treatment response.

Conclusions

Therapeutic effects of steroid therapy in Graves’ orbitopathy are not mediated by Treg and Th17 alterations in the peripheral blood. The decrease in peripheral Treg percentage is likely a consequence of the non-specific effects of steroids and does not impact clinical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Huang Y, Fang S, Li D, Zhou H, Li B, Fan X (2019) The involvement of T cell pathogenesis in thyroid-associated ophthalmopathy. Eye 33:176–182

    Article  CAS  PubMed  Google Scholar 

  2. Fasching P, Stradner M, Graninger W, Dejaco C, Fessler J (2017) Therapeutic potential of targeting the Th17/Treg axis in autoimmune disorders. Mol Basel Switz 22:134

    Google Scholar 

  3. González-Amaro R, Marazuela M (2016) T regulatory (Treg) and T helper 17 (Th17) lymphocytes in thyroid autoimmunity. Endocrine 52:30–38

    Article  PubMed  CAS  Google Scholar 

  4. Matsuzawa K, Izawa S, Okura T, Fujii S, Matsumoto K, Shoji K, Nakamura R, Sumi K, Fujioka Y, Yoshida A, Shigemasa C, Kato M et al (2016) Implications of FoxP3-positive and -negative CD4+ CD25+ T cells in Graves’ ophthalmopathy. Endocr J 63:755–764

    Article  PubMed  Google Scholar 

  5. Pawlowski P, Wawrusiewicz-Kurylonek N, Eckstein A, Reszec J, Luczynski W, Johnson K, Kretowski A, Bakunowicz-Lazarczyk A, Gorska M, Szamatowicz J, Chyczewski L, Mysliwiec J (2015) Disturbances of modulating molecules (FOXP3, CTLA-4/CD28/B7, and CD40/CD40L) mRNA expressions in the orbital tissue from patients with severe Graves’ ophthalmopathy. Mediators Inflamm 2015:e340934

    Article  CAS  Google Scholar 

  6. Petrillo MG, Ronchetti S, Ricci E, Alunno A, Gerli R, Nocentini G, Riccardi C (2015) GITR+ regulatory T cells in the treatment of autoimmune diseases. Autoimmun Rev 14:117–126

    Article  CAS  PubMed  Google Scholar 

  7. Shao S, Yu X, Shen L (2018) Autoimmune thyroid diseases and Th17/Treg lymphocytes. Life Sci 192:160–165

    Article  CAS  PubMed  Google Scholar 

  8. Douglas RS, Gianoukakis AG, Goldberg RA, Kamat S, Smith TJ (2007) Circulating mononuclear cells from euthyroid patients with thyroid-associated ophthalmopathy exhibit characteristic phenotypes. Clin Exp Immunol 148:64–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fang S, Huang Y, Wang S, Zhang Y, Luo X, Liu L, Zhong S, Liu X, Li D, Liang R, Miranda P, Gu P et al (2016) IL-17A exacerbates fibrosis by promoting the proinflammatory and profibrotic function of orbital fibroblasts in TAO. J Clin Endocrinol Metab 101:2955–2965

    Article  CAS  PubMed  Google Scholar 

  10. Shen J, Li Z, Li W, Ge Y, Xie M, Lv M, Fan Y, Chen Z, Zhao D, Han Y (2015) Th1, Th2, and Th17 cytokine involvement in thyroid associated ophthalmopathy. Dis Markers 2015:e609593

    Article  CAS  Google Scholar 

  11. Stadhouders R, Lubberts E, Hendriks RW (2018) A cellular and molecular view of T helper 17 cell plasticity in autoimmunity. J Autoimmun 87:1–15

    Article  CAS  PubMed  Google Scholar 

  12. Fang S, Huang Y, Zhong S, Li Y, Zhang Y, Li Y, Sun J, Liu X, Wang Y, Zhang S, Xu T, Sun X et al (2017) Regulation of orbital fibrosis and adipogenesis by pathogenic Th17 cells in Graves orbitopathy. J Clin Endocrinol Metab 102:4273–4283

    Article  PubMed  Google Scholar 

  13. Fang S, Huang Y, Zhong S, Zhang Y, Liu X, Wang Y, Gu P, Zhou H, Fan X (2016) IL-17A Promotes RANTES Expression, But Not IL-16, in Orbital Fibroblasts Via CD40-CD40L Combination in Thyroid-Associated Ophthalmopathy. Invest Ophthalmol Vis Sci 57:6123–6133

    Article  CAS  PubMed  Google Scholar 

  14. Li C, Yuan J, Zhu Y, Yang X, Wang Q, Xu J, He S, Zhang J (2016) Imbalance of Th17/Treg in Different Subtypes of Autoimmune Thyroid Diseases. Cell Physiol Biochem 40:245–252

    Article  CAS  PubMed  Google Scholar 

  15. Jadidi-Niaragh F, Mirshafiey A (2012) The deviated balance between regulatory T cell and Th17 in autoimmunity. Immunopharmacol Immunotoxicol 34:727–739

    Article  CAS  PubMed  Google Scholar 

  16. Bartalena L, Baldeschi L, Boboridis K, Eckstein A, Kahaly GJ, Marcocci C, Perros P, Salvi M, Wiersinga WM (2016) The 2016 European Thyroid Association/European Group on Graves’ Orbitopathy Guidelines for the Management of Graves’ Orbitopathy. Eur Thyroid J 5:9–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zang S, Ponto KA, Kahaly GJ (2011) Intravenous glucocorticoids for Graves’ orbitopathy: efficacy and morbidity. J Clin Endocrinol Metab 96:320–332

    Article  CAS  PubMed  Google Scholar 

  18. Douglas RS, Kahaly GJ, Patel A, Sile S, Thompson EHZ, Perdok R, Fleming JC, Fowler BT, Marcocci C, Marinò M, Antonelli A, Dailey R et al (2020) Teprotumumab for the treatment of active thyroid eye disease. N Engl J Med 382:341–352

    Article  CAS  PubMed  Google Scholar 

  19. Taylor PN, Zhang L, Lee RWJ, Muller I, Ezra DG, Dayan CM, Kahaly GJ, Ludgate M (2020) New insights into the pathogenesis and nonsurgical management of Graves orbitopathy. Nat Rev Endocrinol 16:104–116

    Article  CAS  PubMed  Google Scholar 

  20. Lee GR (2018) The balance of Th17 versus Treg cells in autoimmunity. Int J Mol Sci 19(3):730.  

    Article  PubMed Central  CAS  Google Scholar 

  21. Ferreira LMR, Muller YD, Bluestone JA, Tang Q (2019) Next-generation regulatory T cell therapy. Nat Rev Drug Discov 18:749–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Raffin C, Vo LT, Bluestone JA (2020) Treg cell-based therapies: challenges and perspectives. Nat Rev Immunol 20:158–172

    Article  CAS  PubMed  Google Scholar 

  23. Dominguez-Villar M, Hafler DA (2018) Regulatory T cells in autoimmune disease. Nat Immunol 19:665–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Samson M, Audia S, Janikashvili N, Ciudad M, Trad M, Fraszczak J, Ornetti P, Maillefert J-F, Miossec P, Bonnotte B (2012) Brief report: inhibition of interleukin-6 function corrects Th17/Treg cell imbalance in patients with rheumatoid arthritis. Arthritis Rheum 64:2499–2503

    Article  CAS  PubMed  Google Scholar 

  25. Wu X-S, Lu X-L, Wu J, Ma M, Yu J, Zhang Z-Y (2019) Tocilizumab promotes corneal allograft survival in rats by modulating Treg-Th17 balance. Int J Ophthalmol 12:1823–1831

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pesce B, Soto L, Sabugo F, Wurmann P, Cuchacovich M, López MN, Sotelo PH, Molina MC, Aguillón JC, Catalán D (2013) Effect of interleukin-6 receptor blockade on the balance between regulatory T cells and T helper type 17 cells in rheumatoid arthritis patients. Clin Exp Immunol 171:237–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mourits MP, Prummel MF, Wiersinga WM, Koornneef L (1997) Clinical activity score as a guide in the management of patients with Graves’ ophthalmopathy. Clin Endocrinol (Oxf) 47:9–14

    Article  CAS  Google Scholar 

  28. Tsirouki T, Bargiota A, Tigas S, Vasileiou A, Kapsalaki E, Giotaki Z, Asproudis I, Tsatsoulis A, Koukoulis G, Tsironi EE (2016) Clinical and imaging evaluation of the response to intravenous steroids in patients with Graves’ orbitopathy and analysis on who requires additional therapy. Clin Ophthalmol Auckl NZ 10:2277–2289

    Article  Google Scholar 

  29. Higashiyama T, Iwasa M, Ohji M (2017) Quantitative analysis of inflammation in orbital fat of thyroid-associated ophthalmopathy using MRI signal intensity.Sci Rep 7(1):16874. https://doi.org/10.1038/s41598-017-17257-6

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tortora F, Prudente M, Cirillo M, Elefante A, Belfiore MP, Romano F, Cappabianca S, Carella C, Cirillo S (2014) Diagnostic accuracy of short-time inversion recovery sequence in Graves’ ophthalmopathy before and after prednisone treatment. Neuroradiology 56:353–361

    Article  PubMed  Google Scholar 

  31. He Y, Mu K, Liu R, Zhang J, Xiang N (2017) Comparison of two different regimens of intravenous methylprednisolone for patients with moderate to severe and active Graves’ ophthalmopathy: a prospective, randomized controlled trial. Endocr J 64:141–149

    Article  CAS  PubMed  Google Scholar 

  32. Werner SC (1977) Modification of the classification of the eye changes of Graves’ disease: recommendations of the Ad Hoc Committee of The American Thyroid Association. J Clin Endocrinol Metab 44:203–204

    Article  CAS  PubMed  Google Scholar 

  33. Prummel MF, Bakker A, Wiersinga WM, Baldeschi L, Mourits MP, Kendall-Taylor P, Perros P, Neoh C, Dickinson AJ, Lazarus JH, Lane CM, Heufelder AE et al (2003) Multi-center study on the characteristics and treatment strategies of patients with Graves’ orbitopathy: the first European Group on Graves’ Orbitopathy experience. Eur J Endocrinol 148:491–495

    Article  CAS  PubMed  Google Scholar 

  34. Ng C, Yuen H, Choi K, Chan M, Yuen K, Ng T (2005) Combined orbital irradiation and systemic steroids compared with systemic steroids alone in the management of moderate-to-severe Graves’ ophthalmopathy: a preliminary study. Hong Kong Med J 11(5):322-30.PMID:16219950

  35. Marcocci C, Bartalena L, Tanda ML, Manetti L, Dell’Unto E, Rocchi R, Barbesino G, Mazzi B, Bartolomei MP, Lepri P, Cartei F, Nardi M et al (2001) Comparison of the effectiveness and tolerability of intravenous or oral glucocorticoids associated with orbital radiotherapy in the management of severe graves’ ophthalmopathy: results of a prospective, single-blind randomized study. J Clin Endocrinol Metab 86:3562–3567

    CAS  PubMed  Google Scholar 

  36. van Geest RJ, Sasim IV, Koppeschaar HPF, Kalmann R, Stravers SN, Bijlsma WR, Mourits MP (2008) Methylprednisolone pulse therapy for patients with moderately severe Graves’ orbitopathy: a prospective, randomized, placebo-controlled study. Eur J Endocrinol 158:229–237

    Article  PubMed  CAS  Google Scholar 

  37. Bahn RS, Gorman CA (1987) Choice of therapy and criteria for assessing treatment outcome in thyroid-associated ophthalmopathy. Endocrinol Metab Clin North Am 16:391–407

    Article  CAS  PubMed  Google Scholar 

  38. Werner SC (1969) Classification of the eye changes of Graves’ disease. Am J Ophthalmol 68:646–648

    Article  CAS  PubMed  Google Scholar 

  39. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods San Diego Calif 25:402–408

    Article  CAS  Google Scholar 

  40. Cari L, De Rosa F, Nocentini G, Riccardi C (2019) Context-dependent effect of glucocorticoids on the proliferation, differentiation, and apoptosis of regulatory T cells: a review of the empirical evidence and clinical applications. Int J Mol Sci 20:1142

    Article  CAS  PubMed Central  Google Scholar 

  41. Strehl C, Ehlers L, Gaber T, Buttgereit F (2019) Glucocorticoids—all-rounders tackling the versatile players of the immune system. Front Immunol. https://doi.org/10.3389/fimmu.2019.01744

    Article  PubMed  PubMed Central  Google Scholar 

  42. Banuelos J, Cao Y, Shin SC, Lu NZ (2017) Immunopathology alters Th17 cell glucocorticoid sensitivity. Allergy 72:331–341

    Article  CAS  PubMed  Google Scholar 

  43. Mathian A, Jouenne R, Chader D, Cohen-Aubart F, Haroche J, Fadlallah J, Claër L, Musset L, Gorochov G, Amoura Z, Miyara M (2015) Regulatory T cell responses to high-dose methylprednisolone in active systemic lupus erythematosus. PLoS ONE 10:1–17

    Article  CAS  Google Scholar 

  44. Ugor E, Prenek L, Pap R, Berta G, Ernszt D, Najbauer J, Németh P, Boldizsár F, Berki T (2018) Glucocorticoid hormone treatment enhances the cytokine production of regulatory T cells by upregulation of Foxp3 expression. Immunobiology 223:422–431

    Article  CAS  PubMed  Google Scholar 

  45. Tselios K, Sarantopoulos A, Gkougkourelas I, Boura P (2015) The influence of therapy on CD4+CD25(high)FOXP3+ regulatory T cells in systemic lupus erythematosus patients: a prospective study. Scand J Rheumatol 44:29–35

    Article  CAS  PubMed  Google Scholar 

  46. Fu X, Cai J, Li M (2019) Prednisone may rebuild the immunologic homeostasis: alteration of Th17 and Treg cells in the lymphocytes from rats’ spleens after treated with prednisone-containing serum. Mol Genet Genomi c Med 7(7):e 00800. https://doi.org/10.1002/mgg3.800

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sbiera S, Dexneit T, Reichardt SD, Michel KD, van den Brandt J, Schmull S, Kraus L, Beyer M, Mlynski R, Wortmann S, Allolio B, Reichardt HM et al (2011) Influence of short-term glucocorticoid therapy on regulatory T cells in vivo. PLoS ONE 6:e24345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hu Y, Tian W, Zhang L-L, Liu H, Yin G-P, He B-S, Mao X-M (2012) Function of regulatory T-cells improved by dexamethasone in Graves’ disease. Eur J Endocrinol Eur Fed Endocr Soc 166:641–646

    Article  CAS  Google Scholar 

  49. de Castro KJ, Knoke K, Kofler DM, Steiger J, Fabri M (2018) Glucocorticoids promote intrinsic human TH17 differentiation. J Allergy Clin Immunol 142:1669-1673.e11

    Article  CAS  Google Scholar 

  50. Vannucchi G, Covelli D, Campi I, Origo D, Currò N, Cirello V, Dazzi D, Beck-Peccoz P, Salvi M (2014) The therapeutic outcome of intravenous steroid therapy for active Graves’ orbitopathy is influenced by the time of response but not polymorphisms of the glucocorticoid receptor. Eur J Endocrinol 170:55–61

    Article  CAS  PubMed  Google Scholar 

  51. Brusko TM, Putnam AL, Bluestone JA (2008) Human regulatory T cells: role in autoimmune disease and therapeutic opportunities. Immunol Rev 223:371–390

    Article  CAS  PubMed  Google Scholar 

  52. Lin S-C, Chen K-H, Lin C-H, Kuo C-C, Ling Q-D, Chan C-H (2007) The quantitative analysis of peripheral blood FOXP3-expressing T cells in systemic lupus erythematosus and rheumatoid arthritis patients. Eur J Clin Invest 37:987–996

    Article  CAS  PubMed  Google Scholar 

  53. Esensten JH, Muller YD, Bluestone JA, Tang Q (2018) Regulatory T-cell therapy for autoimmune and autoinflammatory diseases: the next frontier. J Allergy Clin Immunol 142:1710–1718

    Article  CAS  PubMed  Google Scholar 

  54. Jing S, Lu J, Song J, Luo S, Zhou L, Quan C, Xi J, Zhao C (2019) Effect of low-dose rituximab treatment on T- and B-cell lymphocyte imbalance in refractory myasthenia gravis. J Neuroimmunol 332:216–223

    Article  CAS  PubMed  Google Scholar 

  55. Chong KKL, Khanna D, Afifiyan NF, Hwang CJ, Lee DK, Chokron Garneau H, Goldberg RA, Darwin CH, Smith TJ, Douglas RS (2010) Rituximab treatment of patients with severe, corticosteroid-resistant thyroid-associated ophthalmopathy. Ophthalmology 117:133

    Article  PubMed  Google Scholar 

  56. Perez-Moreiras JV, Gomez-Reino JJ, Maneiro JR, Perez-Pampin E, Romo Lopez A, Rodríguez Alvarez FM, Castillo Laguarta JM, Del Estad Cabello A, Gessa Sorroche M, España Gregori E, Sales-Sanz M, Tocilizumab in Graves Orbitopathy Study Group (2018) Efficacy of tocilizumab in patients with moderate-to-severe corticosteroid-resistant graves orbitopa. Am J Ophthalmol 195:181–190

    Article  CAS  PubMed  Google Scholar 

  57. Lee H-Y, Hong Y-K, Yun H-J, Kim Y-M, Kim J-R, Yoo W-H (2008) Altered frequency and migration capacity of CD4+CD25+ regulatory T cells in systemic lupus erythematosus. Rheumatol Oxf Engl 47:789–794

    Article  CAS  Google Scholar 

  58. Campbell DJ (1950) Control of regulatory T cell migration, function and homeostasis. J Immunol Baltim Md 2015(195):2507–2513

    Google Scholar 

  59. Morita T, Shima Y, Wing JB, Sakaguchi S, Ogata A, Kumanogoh A (2016) The proportion of regulatory T Cells in patients with rheum. PLoS ONE 11:e0162306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Bacchetta R, Barzaghi F, Roncarolo M-G (2018) From IPEX syndrome to FOXP3 mutation: a lesson on immune dysregulation. Ann N Y Acad Sci 1417:5–22

    Article  CAS  PubMed  Google Scholar 

  61. Pap R, Ugor E, Litvai T, Prenek L, Najbauer J, Németh P, Berki T (2019) Glucocorticoid hormone differentially modulates the in vitro expansion and cytokine profile of thymic and splenic Treg cells. Immunobiology 224:285–295

    Article  CAS  PubMed  Google Scholar 

  62. Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10:490–500

    Article  CAS  PubMed  Google Scholar 

  63. Karagiannidis C, Akdis M, Holopainen P, Woolley NJ, Hense G, Rückert B, Mantel P-Y, Menz G, Akdis CA, Blaser K, Schmidt-Weber CB (2004) Glucocorticoids upregulate FOXP3 expression and regulatory T cells in asthma. J Allergy Clin Immunol 114:1425–1433

    Article  CAS  PubMed  Google Scholar 

  64. Ono M (2020) Control of regulatory T-cell differentiation and function by T-cell receptor signalling and Foxp3 transcription factor complexes. Immunology 160:24–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cribbs AP, Kennedy A, Penn H, Amjadi P, Green P, Read JE, Brennan F, Gregory B, Williams RO (2015) Methotrexate restores regulatory T cell function through demethylation of the FoxP3 upstream enhancer in patients with rheumatoid arthritis. Arthritis Rheumatol 67(5): 1182–1192.https://doi.org/10.1002/art.39031

    Article  CAS  PubMed  Google Scholar 

  66. Rudra D, deRoos P, Chaudhry A, Niec RE, Arvey A, Samstein RM, Leslie C, Shaffer SA, Goodlett DR, Rudensky AY (2012) Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nat Immunol 13:1010–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Prado C, Gómez J, López P, de Paz B, Gutiérrez C, Suárez A (2011) Dexamethasone upregulates FOXP3 expression without increasing regulatory activity. Immunobiology 216:386–392

    Article  CAS  PubMed  Google Scholar 

  68. Banuelos J, Shin S, Cao Y, Bochner BS, Morales-Nebreda L, Budinger GRS, Zhou L, Li S, Xin J, Lingen MW, Dong C, Schleimer RP et al (2016) BCL-2 protects human and mouse Th17 cells from glucocorticoid-induced apoptosis. Allergy 71:640–650

    Article  CAS  PubMed  Google Scholar 

  69. Ramesh R, Kozhaya L, McKevitt K, Djuretic IM, Carlson TJ, Quintero MA, McCauley JL, Abreu MT, Unutmaz D, Sundrud MS (2014) Pro-inflammatory human Th17 cells selectively express P-glycoprotein and are refractory to glucocorticoids. J Exp Med 211:89–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schewitz-Bowers LP, Lait PJP, Copland DA, Chen P, Wu W, Dhanda AD, Vistica BP, Williams EL, Liu B, Jawad S, Li Z, Tucker W et al (2015) Glucocorticoid-resistant Th17 cells are selectively attenuated by cyclosporine A. Proc Natl Acad Sci U S A 112:4080–4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu X, Tian J, Wang S (2018) Insight into non-pathogenic Th17 cells in autoimmune diseases. Front Immunol 9:1112. https://doi.org/10.3389/fimmu.2018.01112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kuwabara T, Ishikawa F, Kondo M, Kakiuchi T (2017) The role of IL-17 and related cytokines in inflammatory autoimmune diseases. Mediators Inflamm 2017:3908061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Esplugues E, Huber S, Gagliani N, Hauser AE, Town T, Wan YY, O’Connor W, Rongvaux A, Van Rooijen N, Haberman AM, Iwakura Y, Kuchroo VK et al (2011) Control of TH17 cells occurs in the small intestine. Nature 475:514–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Proper Medical Writing sp. z o. o for the professional language and technical corrections for this manuscript

Funding

This work was supported by funds from the Wroclaw Medical University (STM.C120.16.016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Siomkajło.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

The study was approved by the Local Bioethics Committee at Wroclaw Medical University, Poland (No. KB—618/2015).

Informed consent

All patients provided informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 299 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siomkajło, M., Mizera, Ł., Szymczak, D. et al. Effect of systemic steroid therapy in Graves’ orbitopathy on regulatory T cells and Th17/Treg ratio. J Endocrinol Invest 44, 2475–2484 (2021). https://doi.org/10.1007/s40618-021-01565-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-021-01565-w

Keyword

Navigation