Skip to main content

Advertisement

Log in

The Relationship Between DOT1L, Histone H3 Methylation, and Genome Stability in Cancer

  • Epigenetics (J Davie and C Nelson, Section Editors)
  • Published:
Current Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review describes how disruptor of telomeric silencing 1-like (DOT1L) and histone H3 at lysine 79 (H3K79) methylation maintain genome stability under normal conditions and discusses the consequences of their dysregulation. We highlight the roles that DOT1L and H3K79 methylation have in various cellular processes and detail their roles in the DNA damage response and mitotic fidelity.

Recent Findings

DOT1L is currently the only known enzyme capable of catalyzing the methylation of H3K79. DOT1L activity and H3K79 methylation regulate a number of key cellular processes required to maintain genome stability, including transcription, cell cycle progression, and the DNA damage response. Consequently, alterations of DOT1L activity and H3K79 methylation patterning are predicted to compromise genome stability.

Summary

Consistent with a putative role in oncogenesis, aberrant DOT1L expression and function occur in a wide range of cancer types including breast, colorectal, and lung, yet the exact mechanisms linking altered DOT1L expression and H3K79 methylation to genome instability remain poorly understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Luger K, Mader AW, Richmond RK, et al. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997;389:251–60.

    Article  CAS  PubMed  Google Scholar 

  2. Marmorstein R, Zhou MM. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol. 2014;6:a018762.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Thompson LL, Guppy BJ, Sawchuk L, et al. Regulation of chromatin structure via histone post-translational modification and the link to carcinogenesis. Cancer Metastasis Rev. 2013;32:363–76.

    Article  CAS  PubMed  Google Scholar 

  4. Feng Y, Yang Y, Ortega MM, et al. Early mammalian erythropoiesis requires the Dot1L methyltransferase. Blood. 2010;116:4483–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. van Leeuwen F, Gafken PR, Gottschling DE. Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell. 2002;109:745–56.

    Article  PubMed  Google Scholar 

  6. Min J, Feng Q, Li Z, et al. Structure of the catalytic domain of human DOT1L, a non-SET domain nucleosomal histone methyltransferase. Cell. 2003;112:711–23.

    Article  CAS  PubMed  Google Scholar 

  7. Sawada K, Yang Z, Horton JR, et al. Structure of the conserved core of the yeast Dot1p, a nucleosomal histone H3 lysine 79 methyltransferase. J Biol Chem. 2004;279:43296–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Basavapathruni A, Jin L, Daigle SR, et al. Conformational adaptation drives potent, selective and durable inhibition of the human protein methyltransferase DOT1L. Chem Biol Drug Des. 2012;80:971–80.

    Article  CAS  PubMed  Google Scholar 

  9. Feng Q, Wang H, Ng HH, et al. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol. 2002;12:1052–8.

    Article  CAS  PubMed  Google Scholar 

  10. Ooga M, Inoue A, Kageyama S, et al. Changes in H3K79 methylation during preimplantation development in mice. Biol Reprod. 2008;78:413–24.

    Article  CAS  PubMed  Google Scholar 

  11. • Guppy BJ, McManus KJ. Mitotic accumulation of dimethylated lysine 79 of histone H3 is important for maintaining genome integrity during mitosis in human cells. Genetics. 2015;199:423–33. This study provides in situ data documenting the temporal kinetics of H2Bub1 and H3K79me2 throughout the cell cycle and shows this is critical to maintain genome stability.

    Article  PubMed  Google Scholar 

  12. Singer MS, Kahana A, Wolf AJ, et al. Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae. Genetics. 1998;150:613–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wakeman TP, Wang Q, Feng J, et al. Bat3 facilitates H3K79 dimethylation by DOT1L and promotes DNA damage-induced 53BP1 foci at G1/G2 cell-cycle phases. EMBO J. 2012;31:2169–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Reisenauer MR, Wang SW, Xia Y, et al. Dot1a contains three nuclear localization signals and regulates the epithelial Na+ channel (ENaC) at multiple levels. Am J Physiol Renal Physiol. 2010;299:F63–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang W, Hayashizaki Y, Kone BC. Structure and regulation of the mDot1 gene, a mouse histone H3 methyltransferase. Biochem J. 2004;377:641–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim SK, Jung I, Lee H, et al. Human histone H3K79 methyltransferase DOT1L protein [corrected] binds actively transcribing RNA polymerase II to regulate gene expression. J Biol Chem. 2012;287:39698–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. •• Kuntimaddi A, Achille NJ, Thorpe J, et al. Degree of recruitment of DOT1L to MLL-AF9 defines level of H3K79 di- and tri-methylation on target genes and transformation potential. Cell Rep. 2015;11:808–20. This study presents structural and functional data for the recruitment of DOT1L to AF9 and shows blocking the interaction with MLL-AF9 decreases replating capacity.

  18. Nishida H. Evolutionary conservation levels of subunits of histone-modifying protein complexes in fungi. Comp Funct Genomics. 2009;379317

  19. Leroy G, Dimaggio PA, Chan EY, et al. A quantitative atlas of histone modification signatures from human cancer cells. Epigenetics Chromatin. 2013;6:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sweet SM, Li M, Thomas PM, et al. Kinetics of re-establishing H3K79 methylation marks in global human chromatin. J Biol Chem. 2010;285:32778–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun ZW, Allis CD. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature. 2002;418:104–8.

    Article  CAS  PubMed  Google Scholar 

  22. Sugioka-Sugiyama R, Sugiyama T. Sde2: a novel nuclear protein essential for telomeric silencing and genomic stability in Schizosaccharomyces pombe. Biochem Biophys Res Commun. 2011;406:444–8.

    Article  CAS  PubMed  Google Scholar 

  23. Steger DJ, Lefterova MI, Ying L, et al. DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol Cell Biol. 2008;28:2825–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Oksenych V, Zhovmer A, Ziani S, et al. Histone methyltransferase DOT1L drives recovery of gene expression after a genotoxic attack. PLoS Genet. 2013;9:e1003611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cattaneo P, Kunderfranco P, Greco C, et al. DOT1L-mediated H3K79me2 modification critically regulates gene expression during cardiomyocyte differentiation. Cell Death Differ. 2016;23:555–64.

    Article  CAS  PubMed  Google Scholar 

  26. Huyen Y, Zgheib O, Ditullio Jr RA, et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature. 2004;432:406–11.

    Article  CAS  PubMed  Google Scholar 

  27. Tarcic O, Pateras IS, Cooks T, et al. RNF20 links histone H2B ubiquitylation with inflammation and inflammation-associated cancer. Cell Rep. 2016;14:1462–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wysocki R, Javaheri A, Allard S, et al. Role of Dot1-dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9. Mol Cell Biol. 2005;25:8430–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rideout 3rd WM, Eggan K, Jaenisch R. Nuclear cloning and epigenetic reprogramming of the genome. Science. 2001;293:1093–8.

    Article  CAS  PubMed  Google Scholar 

  30. Leitch HG, Tang WW, Surani MA. Primordial germ-cell development and epigenetic reprogramming in mammals. Curr Top Dev Biol. 2013;104:149–87.

    Article  CAS  PubMed  Google Scholar 

  31. Briggs SD, Xiao T, Sun ZW, et al. Gene silencing: trans-histone regulatory pathway in chromatin. Nature. 2002;418:498.

    Article  CAS  PubMed  Google Scholar 

  32. Vlaming H, van Leeuwen F. The upstreams and downstreams of H3K79 methylation by DOT1L. Chromosoma. 2016;125(4):593–605.

    Article  CAS  PubMed  Google Scholar 

  33. Nguyen AT, Zhang Y. The diverse functions of Dot1 and H3K79 methylation. Genes Dev. 2011;25:1345–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mozziconacci J, Victor JM. Nucleosome gaping supports a functional structure for the 30 nm chromatin fiber. J Struct Biol. 2003;143:72–6.

    Article  CAS  PubMed  Google Scholar 

  35. Fierz B, Chatterjee C, McGinty RK, et al. Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Nat Chem Biol. 2011;7:113–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang E, Kawaoka S, Yu M, et al. Histone H2B ubiquitin ligase RNF20 is required for MLL-rearranged leukemia. Proc Natl Acad Sci U S A. 2013;110:3901–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Woo Park J, Kim KB, Kim JY, et al. RE-IIBP methylates H3K79 and induces MEIS1-mediated apoptosis via H2BK120 ubiquitination by RNF20. Sci Rep. 2015;5:12485.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pavey S, Spoerri L, Haass NK, et al. DNA repair and cell cycle checkpoint defects as drivers and therapeutic targets in melanoma. Pigment Cell Melanoma Res. 2013;26:805–16.

    Article  PubMed  Google Scholar 

  39. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  40. Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.

    Article  PubMed  Google Scholar 

  41. Forbes SA, Bindal N, Bamford S, et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 2011;39:D945–50.

    Article  CAS  PubMed  Google Scholar 

  42. Ciriello G, Gatza ML, Beck AH, et al. Comprehensive molecular portraits of invasive lobular breast cancer. Cell. 2015;163:506–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.

    Article  Google Scholar 

  44. Seshagiri S, Stawiski EW, Durinck S, et al. Recurrent R-spondin fusions in colon cancer. Nature. 2012;488:660–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Giannakis M, Mu XJ, Shukla SA, et al. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep 2016.

  46. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489:519–25.

    Article  Google Scholar 

  47. Imielinski M, Berger AH, Hammerman PS, et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell. 2012;150:1107–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543–50.

    Article  Google Scholar 

  49. Jiao Y, Yonescu R, Offerhaus GJ, et al. Whole-exome sequencing of pancreatic neoplasms with acinar differentiation. J Pathol. 2014;232:428–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Witkiewicz AK, McMillan EA, Balaji U, et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun. 2015;6:6744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell. 2015;163:1011–25.

    Article  Google Scholar 

  52. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–9.

    Article  Google Scholar 

  53. Cancer Genome Atlas Research Network, Kandoth C, Schultz N, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497:67–73.

    Article  Google Scholar 

  54. Jones S, Stransky N, McCord CL, et al. Genomic analyses of gynaecologic carcinosarcomas reveal frequent mutations in chromatin remodelling genes. Nat Commun. 2014;5:5006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sim NL, Kumar P, Hu J, et al. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012;40:W452–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Okada Y, Feng Q, Lin Y, et al. hDOT1L links histone methylation to leukemogenesis. Cell. 2005;121:167–78.

    Article  CAS  PubMed  Google Scholar 

  58. Stein EM, Tallman MS. Mixed lineage rearranged leukaemia: pathogenesis and targeting DOT1L. Curr Opin Hematol. 2015;22:92–6.

    Article  CAS  PubMed  Google Scholar 

  59. Wang X, Chen CW, Armstrong SA. The role of DOT1L in the maintenance of leukemia gene expression. Curr Opin Genet Dev. 2016;36:68–72.

    Article  PubMed  Google Scholar 

  60. Ng HH, Feng Q, Wang H, et al. Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev. 2002;16:1518–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ng HH, Ciccone DN, Morshead KB, et al. Lysine-79 of histone H3 is hypomethylated at silenced loci in yeast and mammalian cells: a potential mechanism for position-effect variegation. Proc Natl Acad Sci U S A. 2003;100:1820–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sims 3rd RJ, Nishioka K, Reinberg D. Histone lysine methylation: a signature for chromatin function. Trends Genet. 2003;19:629–39.

    Article  CAS  PubMed  Google Scholar 

  63. Schubeler D, MacAlpine DM, Scalzo D, et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev. 2004;18:1263–71.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Norris A, Boeke JD. Silent information regulator 3: the Goldilocks of the silencing complex. Genes Dev. 2010;24:115–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Onishi M, Liou GG, Buchberger JR, et al. Role of the conserved Sir3-BAH domain in nucleosome binding and silent chromatin assembly. Mol Cell. 2007;28:1015–28.

    Article  CAS  PubMed  Google Scholar 

  66. San-Segundo PA, Roeder GS. Role for the silencing protein Dot1 in meiotic checkpoint control. Mol Biol Cell. 2000;11:3601–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Misri S, Pandita S, Kumar R, et al. Telomeres, histone code, and DNA damage response. Cytogenet Genome Res. 2008;122:297–307.

    Article  CAS  PubMed  Google Scholar 

  68. Lansdorp PM. Telomeres and disease. EMBO J. 2009;28:2532–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kouskouti A, Talianidis I. Histone modifications defining active genes persist after transcriptional and mitotic inactivation. EMBO J. 2005;24:347–57.

    Article  CAS  PubMed  Google Scholar 

  70. Nguyen AT, Xiao B, Neppl RL, et al. DOT1L regulates dystrophin expression and is critical for cardiac function. Genes Dev. 2011;25:263–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Byrd JC, Mrozek K, Dodge RK, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood. 2002;100:4325–36.

    Article  CAS  PubMed  Google Scholar 

  72. Schoch C, Schnittger S, Kern W, et al. Acute myeloid leukemia with recurring chromosome abnormalities as defined by the WHO-classification: incidence of subgroups, additional genetic abnormalities, FAB subtypes and age distribution in an unselected series of 1,897 patients with acute myeloid leukemia. Haematologica. 2003;88:351–2.

    PubMed  Google Scholar 

  73. Shih LY, Liang DC, Fu JF, et al. Characterization of fusion partner genes in 114 patients with de novo acute myeloid leukemia and MLL rearrangement. Leukemia. 2006;20:218–23.

    Article  CAS  PubMed  Google Scholar 

  74. Bernt KM, Zhu N, Sinha AU, et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell. 2011;20:66–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Daigle SR, Olhava EJ, Therkelsen CA, et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell. 2011;20:53–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. • Daigle SR, Olhava EJ, Therkelsen CA, et al. Potent inhibition of DOT1L as treatment of MLL-fusion leukemia. Blood. 2013;122:1017–25. This study indentifies inhibition of DOT1L as a potential treatment in MLL-fusion leukemias.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yu W, Chory EJ, Wernimont AK, et al. Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors. Nat Commun. 2012;3:1288.

    Article  PubMed  Google Scholar 

  78. • Gilan O, Lam EY, Becher I, et al. Functional interdependence of BRD4 and DOT1L in MLL leukemia. Nat Struct Mol Biol. 2016;23:673–81. This study focuses on targeted therapies against DOT1L and BRD4 and describes the underlying mechanism accounting for the synergistic therapeutic effects observed when they are either genetically disrupted or inhibited.

    Article  CAS  PubMed  Google Scholar 

  79. Onder TT, Kara N, Cherry A, et al. Chromatin-modifying enzymes as modulators of reprogramming. Nature. 2012;483:598–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  CAS  PubMed  Google Scholar 

  81. Boyer LA, Lee TI, Cole MF, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122:947–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lobo NA, Shimono Y, Qian D, et al. The biology of cancer stem cells. Annu Rev Cell Dev Biol. 2007;23:675–99.

    Article  CAS  PubMed  Google Scholar 

  83. Kryczek I, Lin Y, Nagarsheth N, et al. IL-22(+)CD4(+) T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity. 2014;40:772–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yang F, Gao Y, Geng J, et al. Elevated expression of SOX2 and FGFR1 in correlation with poor prognosis in patients with small cell lung cancer. Int J Clin Exp Pathol. 2013;6:2846–54.

    PubMed  PubMed Central  Google Scholar 

  85. Kim W, Kim R, Park G, et al. Deficiency of H3K79 histone methyltransferase Dot1-like protein (DOT1L) inhibits cell proliferation. J Biol Chem. 2012;287:5588–99.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the McManus lab for helpful suggestions. We are grateful for operational support from CIHR (KJM; MOP 115179) CancerCare Manitoba (KJM). BJG is a recipient of a University of Manitoba GETS award, while LMPJ is a recipient of a Research Manitoba/CancerCare Manitoba Foundation studentship. We acknowledge the strong support of the Research Institute in Oncology and Hematology and the CancerCare Manitoba Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirk J. McManus.

Ethics declarations

Conflict of Interest

Brent J. Guppy, Lucile M-P. Jeusset, and Kirk J. McManus each declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Epigenetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guppy, B.J., Jeusset, L.MP. & McManus, K.J. The Relationship Between DOT1L, Histone H3 Methylation, and Genome Stability in Cancer. Curr Mol Bio Rep 3, 18–27 (2017). https://doi.org/10.1007/s40610-017-0051-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40610-017-0051-0

Keywords

Navigation