Skip to main content
Log in

Tularemia from a One Health Perspective

  • Bacteriology (N Borel, Section Editor)
  • Published:
Current Clinical Microbiology Reports Aims and scope Submit manuscript

Abstract

Tularemia is a rare zoonotic disease caused by Francisella tularensis and is also regarded as a potential biological agent. Therefore, it is prudent to monitor outbreaks of tularemia closely.

Purpose of review

The aim of this review is to provide essential information about diagnostic tools and to focus on the epidemiological situation, especially in Europe.

Recent findings

Outbreak investigations based on whole-genome sequencing data have strengths and limitations, because the genome of F. tularensis is highly conserved. Almost identical isolates can be found over large distances and long periods of time, which makes it necessary to perform phylogeographic analyses always in close conjunction with epidemiological and environmental investigations.

Summary

Many reservoir animals and arthropod vectors exist in varying habitats in different geographic regions, but changes of the climate and agricultural techniques will influence the environment and maybe also the relevance of hitherto observed transmission modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Recently published papers of particular interest have been highlighted as: • Of importance •• Of major importance

  1. Johansson A, Farlow J, Larsson P, et al. Worldwide genetic relationships among Francisella tularensis isolates determined by multiple-locus variable-number tandem repeat analysis. J Bacteriol. 2004;186(17):5808–18. doi:10.1128/JB.186.17.5808-5818.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Petersen JM, Schriefer ME. Tularemia: emergence/re-emergence. Vet Res. 2005;36(3):455–67. doi:10.1051/vetres:2005006.

    Article  PubMed  Google Scholar 

  3. Petersen JM, Mead PS, Schriefer ME. Francisella tularensis: an arthropod-borne pathogen. Vet Res. 2009;40(2):7. doi:10.1051/vetres:2008045.

    Article  PubMed  Google Scholar 

  4. Willke A, Meric M, Grunow R, et al. An outbreak of oropharyngeal tularaemia linked to natural spring water. J Med Microbiol. 2009;58(Pt 1):112–6. doi:10.1099/jmm.0.002279-0.

    Article  CAS  PubMed  Google Scholar 

  5. Dennis DT, Inglesby TV, Henderson DA, et al. Tularemia as a biological weapon: medical and public health management. JAMA. 2001;285(21):2763–73.

    Article  CAS  PubMed  Google Scholar 

  6. Herriman R. ISIS and bioterrorism: Tularemia planned use in Turkey’s water. http://outbreaknewstoday.com/isis-and-bioterrorism-tularemia-planned-use-in-turkeys-water-67823/. 2016.

  7. Hepburn MJ, Simpson AJ. Tularemia: current diagnosis and treatment options. Expert Rev Anti-Infect Ther. 2008;6(2):231–40. doi:10.1586/14787210.6.2.231.

    Article  CAS  PubMed  Google Scholar 

  8. • Boisset S, Caspar Y, Sutera V, et al. New therapeutic approaches for treatment of tularaemia: a review. Front Cell Infect Microbiol. 2014;4:40. doi:10.3389/fcimb.2014.00040. Summarizes recent therapeutic approaches.

    Article  PubMed  PubMed Central  Google Scholar 

  9. WHO. WHO Guidelines on Tularaemia; WHO/CDS/EPR/2007.7. 2007.

  10. Glynn AR, Alves DA, Frick O, et al. Comparison of experimental respiratory tularemia in three nonhuman primate species. Comp Immunol Microbiol Infect Dis. 2015;39:13–24. doi:10.1016/j.cimid.2015.01.003.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tularemia (Francisella tularensis) 1999 Case Definition. Centers for Disease Control and Prevention. 1999. 2016.

  12. • Chaignat V, Djordjevic-Spasic M, Ruettger A, et al. Performance of seven serological assays for diagnosing tularemia. BMC Infect Dis. 2014;14:234. doi:10.1186/1471-2334-14-234. Summarizes serological assays for diagnosis.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Porsch-Ozcurumez M, Kischel N, Priebe H, et al. Comparison of enzyme-linked immunosorbent assay, Western blotting, microagglutination, indirect immunofluorescence assay, and flow cytometry for serological diagnosis of tularemia. Clin Diagn Lab Immunol. 2004;11(6):1008–15. doi:10.1128/CDLI.11.6.1008-1015.2004.

    PubMed  PubMed Central  Google Scholar 

  14. Birdsell DN, Vogler AJ, Buchhagen J, et al. TaqMan real-time PCR assays for single-nucleotide polymorphisms which identify Francisella tularensis and its subspecies and subpopulations. PLoS One. 2014;9(9), e107964. doi:10.1371/journal.pone.0107964.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Versage JL, Severin DD, Chu MC, et al. Development of a multitarget real-time TaqMan PCR assay for enhanced detection of Francisella tularensis in complex specimens. J Clin Microbiol. 2003;41(12):5492–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tomaso H, Scholz HC, Neubauer H, et al. Real-time PCR using hybridization probes for the rapid and specific identification of Francisella tularensis subspecies tularensis. Mol Cell Probes. 2007;21(1):12–6. doi:10.1016/j.mcp.2006.06.001.

    Article  CAS  PubMed  Google Scholar 

  17. Kilic S, Celebi B, Yesilyurt M. Evaluation of a commercial immunochromatographic assay for the serologic diagnosis of tularemia. Diagn Microbiol Infect Dis. 2012;74(1):1–5. doi:10.1016/j.diagmicrobio.2012.05.030.

    Article  CAS  PubMed  Google Scholar 

  18. Michelet L, Bonnet S, Madani N, et al. Discriminating Francisella tularensis and Francisella-like endosymbionts in Dermacentor reticulatus ticks: evaluation of current molecular techniques. Vet Microbiol. 2013;163(3–4):399–403. doi:10.1016/j.vetmic.2013.01.014.

    Article  PubMed  Google Scholar 

  19. Zasada AA, Forminska K, Zacharczuk K, et al. Comparison of eleven commercially available rapid tests for detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis. Lett Appl Microbiol. 2015;60(5):409–13. doi:10.1111/lam.12392.

    Article  CAS  PubMed  Google Scholar 

  20. Seibold E, Bogumil R, Vorderwulbecke S, et al. Optimized application of surface-enhanced laser desorption/ionization time-of-flight MS to differentiate Francisella tularensis at the level of subspecies and individual strains. FEMS Immunol Med Microbiol. 2007;49(3):364–73. doi:10.1111/j.1574-695X.2007.00216.x.

    Article  CAS  PubMed  Google Scholar 

  21. Karatuna O, Celebi B, Can S, et al. The use of Matrix-assisted laser desorption ionization-time of flight mass spectrometry in the identification of Francisella tularensis. Bosn J Basic Med Sci. 2016;16(2):132–8. doi:10.17305/bjbms.2016.894.

    PubMed  PubMed Central  Google Scholar 

  22. •• OIE. Chapter 2.01.22 Tularemia. OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2016 2016. Official manual for diagnostics in veterinary medicine.

  23. Tomaso H, Al Dahouk S, Hofer E, et al. Antimicrobial susceptibilities of Austrian Francisella tularensis holarctica biovar II strains. Int J Antimicrob Agents. 2005;26(4):279–84. doi:10.1016/j.ijantimicag.2005.07.003.

    Article  CAS  PubMed  Google Scholar 

  24. Valade E, Vaissaire J, Merens A, et al. Susceptibility of 71 French isolates of Francisella tularensis subsp. holarctica to eight antibiotics and accuracy of the Etest method. J Antimicrob Chemother. 2008;62(1):208–10. doi:10.1093/jac/dkn146.

    Article  CAS  PubMed  Google Scholar 

  25. Kreizinger Z, Makrai L, Helyes G, et al. Antimicrobial susceptibility of Francisella tularensis subsp. holarctica strains from Hungary, Central Europe. J Antimicrob Chemother. 2013;68(2):370–3. doi:10.1093/jac/dks399.

    Article  CAS  PubMed  Google Scholar 

  26. Georgi E, Schacht E, Scholz HC, et al. Standardized broth microdilution antimicrobial susceptibility testing of Francisella tularensis subsp. holarctica strains from Europe and rare Francisella species. J Antimicrob Chemother. 2012;67(10):2429–33. doi:10.1093/jac/dks238.

    Article  CAS  PubMed  Google Scholar 

  27. Becker S, Lochau P, Jacob D, et al. Successful re-evaluation of broth medium T for growth of Francisella tularensis ssp. and other highly pathogenic bacteria. J Microbiol Methods. 2016;121:5–7. doi:10.1016/j.mimet.2015.11.018.

    Article  PubMed  Google Scholar 

  28. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard - Eigth Edition. vol CLSI document M07-A8. Clinical and Laboratory Standards Institute; 2009.

  29. Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria; Approved Guideline - Second Edition. CLSI document M45-A2. 2010.

  30. Tarnvik A, Priebe HS, Grunow R. Tularaemia in Europe: an epidemiological overview. Scand J Infect Dis. 2004;36(5):350–5.

    Article  PubMed  Google Scholar 

  31. Rossow H, Sissonen S, Koskela KA, et al. Detection of Francisella tularensis in voles in Finland. Vector Borne Zoonotic Dis. 2014;14(3):193–8. doi:10.1089/vbz.2012.1255.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kuehn A, Schulze C, Kutzer P, et al. Tularaemia seroprevalence of captured and wild animals in Germany: the fox (Vulpes vulpes) as a biological indicator. Epidemiol Infect. 2013;141(4):833–40. doi:10.1017/S0950268812001008.

    Article  CAS  PubMed  Google Scholar 

  33. Otto P, Chaignat V, Klimpel D, et al. Serological investigation of wild boars (Sus scrofa) and red foxes (Vulpes vulpes) as indicator animals for circulation of Francisella tularensis in Germany. Vector Borne Zoonotic Dis. 2014;14(1):46–51. doi:10.1089/vbz.2013.1321.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Al Dahouk S, Nockler K, Tomaso H, et al. Seroprevalence of brucellosis, tularemia, and yersiniosis in wild boars (Sus scrofa) from north-eastern Germany. J Vet Med B Infect Dis Vet Public Health. 2005;52(10):444–55. doi:10.1111/j.1439-0450.2005.00898.x.

    Article  CAS  PubMed  Google Scholar 

  35. Maraha B, Hajer G, Sjodin A, et al. Indigenous Infection with Francisella tularensis holarctica in The Netherlands. Case Rep Infect Dis. 2013;2013:916985. doi:10.1155/2013/916985.

    PubMed  PubMed Central  Google Scholar 

  36. Rijks JM, Kik M, Koene MG et al. Tularaemia in a brown hare (Lepus europaeus) in 2013: first case in the Netherlands in 60 years. Euro Surveill. 2013;18(49).

  37. van de Wetering D. Oliveira dos Santos C, Wagelaar M et al. A cluster of tularaemia after contact with a dead hare in the Netherlands. Neth J Med. 2015;73(10):481–2.

    PubMed  Google Scholar 

  38. Dupont E, Van Eeckhoudt S, Thissen X, et al. About three cases of ulceroglandular tularemia, is this the re-emergence of Francisella tularensis in Belgium? Acta Clin Belg. 2015;70(5):364–8. doi:10.1179/2295333715Y.0000000022.

    Article  CAS  PubMed  Google Scholar 

  39. Rossow H, Ollgren J, Klemets P, et al. Risk factors for pneumonic and ulceroglandular tularaemia in Finland: a population-based case-control study. Epidemiol Infect. 2014;142(10):2207–16. doi:10.1017/S0950268813002999.

    Article  CAS  PubMed  Google Scholar 

  40. Decors A, Lesage C, Jourdain E et al. Outbreak of tularaemia in brown hares (Lepus europaeus) in France, January to March 2011. Euro Surveill. 2011;16(28).

  41. Tobudic S, Nedomansky K, Poeppl W, et al. Seroprevalence for Coxiella burnetii, Francisella tularensis, Brucella abortus and Brucella melitensis in Austrian adults: a cross-sectional survey among military personnel and civilians. Ticks Tick Borne Dis. 2014;5(3):315–7. doi:10.1016/j.ttbdis.2013.12.007.

    Article  PubMed  Google Scholar 

  42. Zakutna L, Dorko E, Rimarova K, et al. Pilot Cross-Sectional Study of Three Zoonoses (Lyme Disease, Tularaemia, Leptospirosis) among Healthy Blood Donors in Eastern Slovakia. Cent Eur J Public Health. 2015;23(2):100–6. doi:10.21101/cejph.a4052.

    Article  Google Scholar 

  43. Jurke A, Bannert N, Brehm K, et al. Serological survey of Bartonella spp., Borrelia burgdorferi, Brucella spp., Coxiella burnetii, Francisella tularensis, Leptospira spp., Echinococcus, Hanta-, TBE- and XMR-virus infection in employees of two forestry enterprises in North Rhine-Westphalia, Germany, 2011-2013. Int J Med Microbiol. 2015;305(7):652–62. doi:10.1016/j.ijmm.2015.08.015.

    Article  PubMed  Google Scholar 

  44. Zukiewicz-Sobczak W, Zwolinski J, Chmielewska-Badora J, et al. Prevalence of antibodies against selected zoonotic agents in forestry workers from eastern and southern Poland. Ann Agric Environ Med. 2014;21(4):767–70. doi:10.5604/12321966.1129930.

    Article  PubMed  Google Scholar 

  45. Rossow H, Ollgren J, Hytonen J, et al. Incidence and seroprevalence of tularaemia in Finland, 1995 to 2013: regional epidemics with cyclic pattern. Euro Surveill. 2015;20(33):21209.

    Article  CAS  PubMed  Google Scholar 

  46. Mailles A, Vaillant V. 10 years of surveillance of human tularaemia in France. Euro Surveill. 2014;19(45):20956.

    Article  CAS  PubMed  Google Scholar 

  47. Hauri AM, Hofstetter I, Seibold E, et al. Investigating an airborne tularemia outbreak. Germany Emerg Infect Dis. 2010;16(2):238–43. doi:10.3201/eid1602.081727.

    Article  PubMed  Google Scholar 

  48. Elashvili E, Kracalik I, Burjanadze I, et al. Environmental Monitoring and Surveillance of Rodents and Vectors for Francisella tularensis Following Outbreaks of Human Tularemia in Georgia. Vector Borne Zoonotic Dis. 2015;15(10):633–6. doi:10.1089/vbz.2015.1781.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gyuranecz M, Reiczigel J, Krisztalovics K, et al. Factors influencing emergence of tularemia, Hungary, 1984–2010. Emerg Infect Dis. 2012;18(8):1379–81. doi:10.3201/eid1808.111826.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Luque-Larena JJ, Mougeot F, Roig DV, et al. Tularemia Outbreaks and Common Vole (Microtus arvalis) Irruptive Population Dynamics in Northwestern Spain, 1997–2014. Vector Borne Zoonotic Dis. 2015;15(9):568–70. doi:10.1089/vbz.2015.1770.

    Article  PubMed  Google Scholar 

  51. Ryden P, Bjork R, Schafer ML, et al. Outbreaks of tularemia in a boreal forest region depends on mosquito prevalence. J Infect Dis. 2012;205(2):297–304. doi:10.1093/infdis/jir732.

    Article  PubMed  Google Scholar 

  52. Hanke CA, Otten JE, Berner R, et al. Ulceroglandular tularemia in a toddler in Germany after a mosquito bite. Eur J Pediatr. 2009;168(8):937–40. doi:10.1007/s00431-008-0862-3.

    Article  PubMed  Google Scholar 

  53. Forminska K, Zasada AA, Rastawicki W, et al. Increasing role of arthropod bites in tularaemia transmission in Poland - case reports and diagnostic methods. Ann Agric Environ Med. 2015;22(3):443–6. doi:10.5604/12321966.1167711.

    Article  PubMed  Google Scholar 

  54. • Thelaus J, Andersson A, Broman T, et al. Francisella tularensis subspecies holarctica occurs in Swedish mosquitoes, persists through the developmental stages of laboratory-infected mosquitoes and is transmissible during blood feeding. Microb Ecol. 2014;67(1):96–107. doi:10.1007/s00248-013-0285-1. Transmission of F. tularensis by insects.

    Article  CAS  PubMed  Google Scholar 

  55. Genchi M, Prati P, Vicari N, et al. Francisella tularensis: No Evidence for Transovarial Transmission in the Tularemia Tick Vectors Dermacentor reticulatus and Ixodes ricinus. PLoS One. 2015;10(8), e0133593. doi:10.1371/journal.pone.0133593.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Klock LE, Olsen PF, Fukushima T. Tularemia epidemic associated with the deerfly. JAMA. 1973;226(2):149–52.

    Article  CAS  PubMed  Google Scholar 

  57. Ryden P, Sjostedt A, Johansson A. Effects of climate change on tularaemia disease activity in Sweden. Glob Health Action. 2009. doi:10.3402/gha.v2i0.2063.

    PubMed  PubMed Central  Google Scholar 

  58. Aktas D, Celebi B, Isik ME, et al. Oropharyngeal Tularemia Outbreak Associated with Drinking Contaminated Tap Water, Turkey, July–September 2013. Emerg Infect Dis. 2015;21(12):2194–6. doi:10.3201/eid2112.142032.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kilic S, Birdsell DN, Karagoz A, et al. Water as Source of Francisella tularensis Infection in Humans. Turkey Emerg Infect Dis. 2015;21(12):2213–6. doi:10.3201/eid2112.150634.

    Article  CAS  PubMed  Google Scholar 

  60. Ughetto E, Hery-Arnaud G, Cariou ME, et al. An original case of Francisella tularensis subsp. holarctica bacteremia after a near-drowning accident. Infect Dis (Lond). 2015;47(8):588–90. doi:10.3109/23744235.2015.1028099.

    Article  Google Scholar 

  61. •• Desvars A, Furberg M, Hjertqvist M, et al. Epidemiology and ecology of tularemia in Sweden, 1984–2012. Emerg Infect Dis. 2015;21(1):32–9. doi:10.3201/eid2101.140916. Summarizes eopidemiological situation concerning tularemia over many years.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Broman T, Thelaus J, Andersson AC, et al. Molecular Detection of Persistent Francisella tularensis Subspecies holarctica in Natural Waters. Int J Microbiol. 2011. doi:10.1155/2011/851946.

    PubMed  Google Scholar 

  63. Grunow R, Kalaveshi A, Kuhn A et al. Surveillance of tularaemia in Kosovo, 2001 to 2010. Euro Surveill. 2012;17(28).

  64. Djordjevic-Spasic M, Potkonjak A, Kostic V, et al. Oropharyngeal tularemia in father and son after consumption of under-cooked rabbit meat. Scand J Infect Dis. 2011;43(11–12):977–81. doi:10.3109/00365548.2011.592988.

    Article  PubMed  Google Scholar 

  65. Komitova R, Nenova R, Padeshki P, et al. Tularemia in bulgaria 2003–2004. J Infect Dev Ctries. 2010;4(11):689–94.

    Article  PubMed  Google Scholar 

  66. Hristovski KD, Pacemska-Atanasova T, Olson LW, et al. Potential health implications of water resources depletion and sewage discharges in the Republic of Macedonia. J Water Health. 2016;14(4):682–91. doi:10.2166/wh.2016.274.

    Article  PubMed  Google Scholar 

  67. RKI. SurvStat@RKI 2.0. Robert Koch Institut, Berlin, Germany. 2016. https://survstat.rki.de/.

  68. Padeshki PI, Ivanov IN, Popov B, et al. The role of birds in dissemination of Francisella tularensis: first direct molecular evidence for bird-to-human transmission. Epidemiol Infect. 2010;138(3):376–9. doi:10.1017/S0950268809990513.

    Article  CAS  PubMed  Google Scholar 

  69. Hildebrandt A, Franke J, Schmoock G, et al. Diversity and coexistence of tick-borne pathogens in central Germany. J Med Entomol. 2011;48(3):651–5.

    Article  PubMed  Google Scholar 

  70. Toma L, Mancini F, Di Luca M, et al. Detection of microbial agents in ticks collected from migratory birds in central Italy. Vector Borne Zoonotic Dis. 2014;14(3):199–205. doi:10.1089/vbz.2013.1458.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Nordstoga A, Handeland K, Johansen TB, et al. Tularaemia in Norwegian dogs. Vet Microbiol. 2014;173(3–4):318–22. doi:10.1016/j.vetmic.2014.06.031.

    Article  PubMed  Google Scholar 

  72. Larson MA, Fey PD, Hinrichs SH, et al. Francisella tularensis bacteria associated with feline tularemia in the United States. Emerg Infect Dis. 2014;20(12):2068–71. doi:10.3201/eid2012.131101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pennisi MG, Egberink H, Hartmann K, et al. Francisella tularensis infection in cats: ABCD guidelines on prevention and management. J Feline Med Surg. 2013;15(7):585–7. doi:10.1177/1098612X13489219.

    Article  PubMed  Google Scholar 

  74. Eliasson H, Lindback J, Nuorti JP, et al. The 2000 tularemia outbreak: a case-control study of risk factors in disease-endemic and emergent areas. Sweden Emerg Infect Dis. 2002;8(9):956–60. doi:10.3201/eid0809.020051.

    Article  PubMed  Google Scholar 

  75. Karlsson E, Svensson K, Lindgren P, et al. The phylogeographic pattern of Francisella tularensis in Sweden indicates a Scandinavian origin of Eurosiberian tularaemia. Environ Microbiol. 2013;15(2):634–45. doi:10.1111/1462-2920.12052.

    Article  PubMed  Google Scholar 

  76. Afset JE, Larssen KW, Bergh K, et al. Phylogeographical pattern of Francisella tularensis in a nationwide outbreak of tularaemia in Norway, 2011. Euro Surveill. 2015;20(19):9–14.

    Article  CAS  PubMed  Google Scholar 

  77. Lu Y, Yu Y, Feng L, et al. Phylogeography of Francisella tularensis from Tibet, China: Evidence for an asian origin and radiation of holarctica-type Tularemia. Ticks Tick Borne Dis. 2016. doi:10.1016/j.ttbdis.2016.04.001.

    PubMed  Google Scholar 

  78. Vogler AJ, Birdsell D, Price LB, et al. Phylogeography of Francisella tularensis: global expansion of a highly fit clone. J Bacteriol. 2009;191(8):2474–84. doi:10.1128/JB.01786-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Keim PS, Wagner DM. Humans and evolutionary and ecological forces shaped the phylogeography of recently emerged diseases. Nat Rev Microbiol. 2009;7(11):813–21. doi:10.1038/nrmicro2219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pandya GA, Holmes MH, Petersen JM, et al. Whole genome single nucleotide polymorphism based phylogeny of Francisella tularensis and its application to the development of a strain typing assay. BMC Microbiol. 2009;9:213. doi:10.1186/1471-2180-9-213.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Svensson K, Granberg M, Karlsson L, et al. A real-time PCR array for hierarchical identification of Francisella isolates. PLoS One. 2009;4(12), e8360. doi:10.1371/journal.pone.0008360.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chanturia G, Birdsell DN, Kekelidze M, et al. Phylogeography of Francisella tularensis subspecies holarctica from the country of Georgia. BMC Microbiol. 2011;11:139. doi:10.1186/1471-2180-11-139.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gyuranecz M, Birdsell DN, Splettstoesser W, et al. Phylogeography of Francisella tularensis subsp. holarctica, Europe. Emerg Infect Dis. 2012;18(2):290–3. doi:10.3201/eid1802.111305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Karadenizli A, Forsman M, Simsek H et al. Genomic analyses of Francisella tularensis strains confirm disease transmission from drinking water sources, Turkey, 2008, 2009 and 2012. Euro Surveill. 2015;20(21)

  85. Sissonen S, Rossow H, Karlsson E, et al. Phylogeography of Francisella tularensis subspecies holarctica in Finland, 1993–2011. Infect Dis (Lond). 2015;47(10):701–6. doi:10.3109/23744235.2015.1049657.

    Article  Google Scholar 

  86. Antwerpen MH, Prior K, Mellmann A, et al. Rapid high resolution genotyping of Francisella tularensis by whole genome sequence comparison of annotated genes ("MLST+"). PLoS One. 2015;10(4), e0123298. doi:10.1371/journal.pone.0123298.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Johansson A, Larkeryd A, Widerstrom M, et al. An outbreak of respiratory tularemia caused by diverse clones of Francisella tularensis. Clin Infect Dis. 2014;59(11):1546–53. doi:10.1093/cid/ciu621.

    Article  PubMed  PubMed Central  Google Scholar 

  88. •• Wahab T, Birdsell DN, Hjertqvist M, et al. Insights to genetic characterization tools for epidemiological tracking of Francisella tularensis in Sweden. PLoS One. 2014;9(11):e112167. doi:10.1371/journal.pone.0112167. Application of different typing methods for epidemiology.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Huber B, Escudero R, Busse HJ, et al. Description of Francisella hispaniensis sp. nov., isolated from human blood, reclassification of Francisella novicida (Larson et al. 1955) Olsufiev et al. 1959 as Francisella tularensis subsp. novicida comb. nov. and emended description of the genus Francisella. Int J Syst Evol Microbiol. 2010;60(Pt 8):1887–96. doi:10.1099/ijs.0.015941-0.

    Article  CAS  PubMed  Google Scholar 

  90. Lopes de Carvalho I, Toledo A, Carvalho CL, et al. Francisella species in ticks and animals Iberian Peninsula. Ticks Tick Borne Dis. 2016;7(1):159–65. doi:10.1016/j.ttbdis.2015.10.009.

    Article  CAS  PubMed  Google Scholar 

  91. Aravena-Roman M, Merritt A, Inglis TJ. First case of Francisella bacteraemia in Western Australia. New Microbes New Infect. 2015;8:75–7. doi:10.1016/j.nmni.2015.10.004.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Qu PH, Chen SY, Scholz HC, et al. Francisella guangzhouensis sp. nov., isolated from air-conditioning systems. Int J Syst Evol Microbiol. 2013;63(Pt 10):3628–35. doi:10.1099/ijs.0.049916-0.

    Article  CAS  PubMed  Google Scholar 

  93. Svensson D, Ohrman C, Backman S et al. Complete Genome Sequence of Francisella guangzhouensis Strain 08HL01032T, Isolated from Air-Conditioning Systems in China. Genome Announc. 2015;3(2). doi:10.1128/genomeA.00024-15.

  94. Rydzewski K, Schulz T, Brzuszkiewicz E, et al. Genome sequence and phenotypic analysis of a first German Francisella sp. isolate (W12-1067) not belonging to the species Francisella tularensis. BMC Microbiol. 2014;14:169. doi:10.1186/1471-2180-14-169.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Tomaso.

Ethics declarations

Conflict of Interest

Herbert Tomaso and Helmut Hotzel declare they have no competing interests.

Human and Animal Rights and Informed Consent

This article contains no studies with human or animal subjects performed by the authors.

Additional information

This article is part of the Topical Collection on Bacteriology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomaso, H., Hotzel, H. Tularemia from a One Health Perspective. Curr Clin Micro Rpt 4, 36–42 (2017). https://doi.org/10.1007/s40588-017-0056-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40588-017-0056-8

Keywords

Navigation