Skip to main content
Log in

Abstract

We study typical ranks with respect to a real variety X. Examples of such are tensor rank (X is the Segre variety) and symmetric tensor rank (X is the Veronese variety). We show that any rank between the minimal typical rank and the maximal typical rank is also typical. We investigate typical ranks of n-variate symmetric tensors of order d, or equivalently homogeneous polynomials of degree d in n variables, for small values of n and d. We show that 4 is the unique typical rank of real ternary cubics, and quaternary cubics have typical ranks 5 and 6 only. For ternary quartics we show that 6 and 7 are typical ranks and that all typical ranks are between 6 and 8. For ternary quintics we show that the typical ranks are between 7 and 13.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alexander, J., Hirschowitz, A.: Polynomial interpolation in several variables. J. Alg. Geom. 4, 201–222 (1995)

    MathSciNet  MATH  Google Scholar 

  2. Banchi, M.: Rank and border rank of real ternary cubics. Bollettino dell’UMI 8, 65–80 (2015)

    Article  MathSciNet  Google Scholar 

  3. Blekherman, G.: Typical real ranks of binary forms. Found. Comput. Math. 15(3), 793–798 (2015)

    Article  MathSciNet  Google Scholar 

  4. Blekherman, G., Teitler, Z.: On maximum, typical, and generic ranks. Mathematische Annalen 362(3), 1021–1031 (2015)

    Article  MathSciNet  Google Scholar 

  5. Boji, M., Carlini, E., Geramita, A.: Monomials as sum of powers, the real binary case. Proc. Am. Math. Soc. 139, 3039–3043 (2011)

    Article  MathSciNet  Google Scholar 

  6. Carlini, E., Catalisano, M.V., Geramita, A.: The solution to the Waring problem for monomials and the sum of coprime monomials. J. Algebra 370, 5–14 (2012)

    Article  MathSciNet  Google Scholar 

  7. Causa, A., Re, R.: On the maximum rank of a real binary form. Annali di Matematica Pura ed Applicata 190(1), 55–59 (2011)

    Article  MathSciNet  Google Scholar 

  8. Comon, P., Ten Berge, J.: Generic and typical ranks of the three-way arrays. In: Icassp’08, pp. 3313–3316. Las Vegas, March 30–April 4. hal-00327627 (2008)

  9. Comon P., Ten Berge, J.M.F., DeLathauwer L., Castaing, J.: Generic and typical ranks of multi-way arrays. Linear Algebra Appl. 430(11–12), 2997–3007 (2009) (hal-00410058)

    Article  MathSciNet  Google Scholar 

  10. Comon, P., Ottaviani, G.: On the typical rank of real binary forms. Linear Multilinear Algebra 60(6), 657–667 (2012)

    Article  MathSciNet  Google Scholar 

  11. De Paris, A.: A proof that the maximal rank for plane quartics is seven. Matematiche (Catania) 70(2), 3–18 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Dolgachev, I., Kanev, V.: Polar covariants of plane cubics and quartics. Adv. Math. 98, 216–301 (1993)

    Article  MathSciNet  Google Scholar 

  13. Enriques, F., Chisini O.: Lezioni sulla teoria geometrica delle equazioni e delle funzioni algebriche. 1. Vol. I, II, volume 5 of Collana di Matematica [Mathematics Collection]. Nicola Zanichelli Editore S.p.A., Bologna. Reprint of the 1924 and 1934 editions (1985)

  14. Friedland, S.: On the generic rank of 3-tensors. Linear Algebra Appl. 436, 478–497 (2012)

    Article  MathSciNet  Google Scholar 

  15. Kruskal, J.B.: Rank, decomposition, and uniqueness for 3-way and \(N\)-way arrays. In: Multiway data analysis (Rome , 1988), pp. 7–18. North-Holland, Amsterdam (1989)

  16. Kollàr, J., Schreyer, F.O.: Real Fano 3-folds of type \(V_{22}\). In: The Fano Conference, pp. 515–531. Univ. Torino, Turin (2004)

  17. Lachaud, G., Ritzenthaler, C.: On some questions of Serre on abelian threefolds. Algebraic geometry and its applications, 88115, Ser. Number Theory Appl., 5, World Sci. Publ., Hackensack, NJ (2008)

  18. Michałek, M., Moon, H., Sturmfels, B., Ventura, E.: Real rank geometry of ternary forms. Annali di Matematica Pura ed Applicata. 196, 1025–1054 (1923)

    Article  MathSciNet  Google Scholar 

  19. Mukai, S.: Fano \(3\)-folds. In: Complex projective geometry (Trieste, 1989/Bergen, 1989), volume 179 of London Math. Soc. Lecture Note Ser., pp. 255–263. Cambridge Univ. Press, Cambridge (1992)

  20. Ottaviani, G.: An invariant regarding Waring’s problem for cubic polynomials. Nagoya Math. J. 193, 95–110 (2009)

    Article  MathSciNet  Google Scholar 

  21. Ranestad, K., Schreyer, F.O.: Varieties of sums of powers. J. Reine. Angew. Math. 525, 147–181 (2000)

    Article  MathSciNet  Google Scholar 

  22. Reznick B.: Sums of even powers of real linear forms. Memoirs AMS. 96, 463 (1992)

    Article  MathSciNet  Google Scholar 

  23. Reznick, B.: Laws of inertia in higher degree binary forms. Proc. Am. Math. Soc. 138, 815–826 (2010)

    Article  MathSciNet  Google Scholar 

  24. Sumi, T., Miyazaki, M., Sakata, T.: Typical ranks for \(m\times n\times (m-1)n\) tensors with \(m\le n\). Linear Algebra Appl. 438, 953–958 (2013)

    Article  MathSciNet  Google Scholar 

  25. Ten Berge, J.M.F.: The typical rank of tall three-way arrays. Psychometrika 65(4), 525–532 (2000)

    Article  MathSciNet  Google Scholar 

  26. Ten Berge, J.M.F., Kiers, H.A.L.: Simplicity of core arrays in three-way principal component analysis and the typical rank of \(p\times q \times 2\) arrays. Linear Algebra Appl. 294(1–3), 169–179 (1999)

    Article  MathSciNet  Google Scholar 

  27. Ten Berge, J.M.F., Stegeman, A.: Symmetry transformations for square sliced three-way arrays, with applications to their typical rank. Linear Algebra Appl. 418(1), 215–224 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank F. O. Schreyer for useful talks about the paper [16]. We thank the Simons Institute for the Theory of Computing in Berkeley, CA for their generous support while in residence during the program on Algorithms and Complexity in Algebraic Geometry. The second author was partially supported by the Sloan Research Fellowship and NSF CAREER award DMS-1352073. A. Bernardi and G. Ottaviani are members of GNSAGA-INDAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Bernardi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardi, A., Blekherman, G. & Ottaviani, G. On real typical ranks. Boll Unione Mat Ital 11, 293–307 (2018). https://doi.org/10.1007/s40574-017-0134-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40574-017-0134-0

Mathematics Subject Classification

Navigation