Skip to main content

Advertisement

Log in

Evaluating a Gene-Environment Interaction in Amyotrophic Lateral Sclerosis: Methylmercury Exposure and Mutated SOD1

  • Mechanisms of Toxicity (JR Richardson, Section Editor)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Gene-environment (GxE) interactions likely contribute to numerous diseases, but are often difficult to model in the laboratory. Such interactions have been widely hypothesized for amyotrophic lateral sclerosis (ALS); recent controlled laboratory studies are discussed here and hypotheses related to possible mechanisms of action are offered. Using methylmercury exposure and mutated SOD1 to model the impacts of such an interaction, we interpret evidence about their respective mechanisms of toxicity to interrogate the possibility of additive (or synergistic) effects when combined.

Recent Findings

Recent work has converged on mechanisms of calcium-mediated glutamate excitotoxicity as a likely contributor in one model of a gene-environment interaction affecting the onset and progression of ALS-like phenotype.

Summary

The current experimental literature on mechanisms of metal-induced neuronal injury and their relevant interactions with genetic contributions in ALS is sparse, but we describe those studies here and offer several integrative hypotheses about the likely mechanisms involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

GxE:

Gene-environment interaction

ALS:

Amyotrophic lateral sclerosis

sALS:

Sporadic amyotrophic lateral sclerosis

fALS:

Familial amyotrophic lateral sclerosis

SOD1:

Superoxide dismutase 1

FUS:

Fused in sarcoma/translocated in sarcoma

TDP-43:

TAR DNA-binding protein 43

C9orf72:

Chromosome 9 open reading frame 72

MN:

Motor neuron

CPOX4:

Coproporphyrinogen oxidase 4

BDNF:

Brain-derived neurotrophic factor

MeHg:

Methylmercury

SNP:

Single nucleotide polymorphisms

Glu:

Glutamate

[Ca2+]i :

Internal calcium concentration

NMDA:

N-methyl-D-aspartate

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

ROS:

Reactive oxygen species

EAAT:

Excitatory amino acid transporter

CNQX:

6-Cyano-7-nitroquinoxaline-2,3-dione

NAS:

1-Naphthyl acetyl spermine

GluA2:

AMPA receptor subunit 2

ADAR2:

Adenosine deaminase acting on RNA

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Wang MD, Little J, Gomes J, Cashman NR, Krewski D. Identification of risk factors associated with onset and progression of amyotrophic lateral sclerosis using systematic review and meta-analysis. Neurotoxicology. 2016; doi:10.1016/j.neuro.2016.06.015. This study provides a thorough description of all known risk factors associated with ALS

    Google Scholar 

  2. Mitchell JD. Amyotrophic lateral sclerosis: toxins and environment. Amyotrophic lateral sclerosis and other motor neuron disorders: official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases. 2000;1(4):235–50.

    Article  CAS  Google Scholar 

  3. Echeverria D, Woods JS, Heyer NJ, Rohlman D, Farin FM, Li T, et al. The association between a genetic polymorphism of coproporphyrinogen oxidase, dental mercury exposure and neurobehavioral response in humans. Neurotoxicol Teratol. 2006;28(1):39–48.

    Article  CAS  PubMed  Google Scholar 

  4. Echeverria D, Woods JS, Heyer NJ, Rohlman DS, Farin FM, Bittner Jr AC, et al. Chronic low-level mercury exposure, BDNF polymorphism, and associations with cognitive and motor function. Neurotoxicol Teratol. 2005;27(6):781–96.

    Article  CAS  PubMed  Google Scholar 

  5. Andersen PM. Amyotrophic lateral sclerosis associated with mutations in the CuZn superoxide dismutase gene. Current Neurology and Neuroscience Reports. 2006;6(1):37–46.

    Article  CAS  PubMed  Google Scholar 

  6. Majounie E, Renton AE, Mok K, Dopper EG, Waite A, Rollinson S, et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. The Lancet Neurology. 2012;11(4):323–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lattante S, Rouleau GA, Kabashi E. TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: summary and update. Hum Mutat. 2013;34(6):812–26.

    Article  CAS  PubMed  Google Scholar 

  8. • Oskarsson B, Horton DK, Mitsumoto H. Potential environmental factors in amyotrophic lateral sclerosis. Neurol Clin. 2015;33(4):877–88. This study describes the known environmental factors associated with ALS.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Al-Chalabi A, Hardiman O. The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol. 2013;9(11):617–28.

    Article  CAS  PubMed  Google Scholar 

  10. Trojsi F, Monsurro MR, Tedeschi G. Exposure to environmental toxicants and pathogenesis of amyotrophic lateral sclerosis: state of the art and research perspectives. Int J Mol Sci. 2013;14(8):15286–311.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rowland LP, Shneider NA. Amyotrophic lateral sclerosis. N Engl J Med. 2001;344(22):1688–700.

    Article  CAS  PubMed  Google Scholar 

  12. Factor-Litvak P, Al-Chalabi A, Ascherio A, Bradley W, Chio A, Garruto R, et al. Current pathways for epidemiological research in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis & Frontotemporal Degeneration. 2013;14(Suppl 1):33–43.

    Article  Google Scholar 

  13. • Cleveland DW, Rothstein JD. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci. 2001;2(11):806–19. This study describes the machanics of motor neuron dysfunction in ALS

    Article  CAS  PubMed  Google Scholar 

  14. Tandan R, Bradley WG. Amyotrophic lateral sclerosis: Part 1. Clinical features, pathology, and ethical issues in management. Ann Neurol. 1985;18(3):271–80.

    Article  CAS  PubMed  Google Scholar 

  15. Bryant PR, Geis CC, Moroz A, O'Neill BJ, Bogey RA. Stroke and neurodegenerative disorders. 4. Neurodegenerative disorders. Arch Phys Med Rehabil. 2004;85(3 Suppl 1):S21–33.

    Article  PubMed  Google Scholar 

  16. Deng HX, Chen W, Hong ST, Boycott KM, Gorrie GH, Siddique N, et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature. 2011;477(7363):211–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pasinelli P, Brown RH. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci. 2006;7(9):710–23.

    Article  CAS  PubMed  Google Scholar 

  18. • Boillee S, Vande Velde C, Cleveland DW. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron. 2006;52(1):39–59. This study, importantly, descibes the role of glial cells in the dysfunction associated with ALS

    Article  CAS  PubMed  Google Scholar 

  19. Hedlund E, Isacson O. ALS model glia can mediate toxicity to motor neurons derived from human embryonic stem cells. Cell Stem Cell. 2008;3(6):575–6.

    Article  CAS  PubMed  Google Scholar 

  20. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, et al. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science (New York, NY). 1994;264(5166):1772–5.

    Article  CAS  Google Scholar 

  21. Hayashi Y, Homma K, Ichijo H. SOD1 in neurotoxicity and its controversial roles in SOD1 mutation-negative ALS. Advances in Biological Regulation. 2016;60:95–104.

    Article  CAS  PubMed  Google Scholar 

  22. Guareschi S, Cova E, Cereda C, Ceroni M, Donetti E, Bosco DA, et al. An over-oxidized form of superoxide dismutase found in sporadic amyotrophic lateral sclerosis with bulbar onset shares a toxic mechanism with mutant SOD1. Proc Natl Acad Sci U S A. 2012;109(13):5074–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Forsberg K, Jonsson PA, Andersen PM, Bergemalm D, Graffmo KS, Hultdin M, et al. Novel antibodies reveal inclusions containing non-native SOD1 in sporadic ALS patients. PLoS One. 2010;5(7):e11552.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Barber TE. Inorganic mercury intoxication reminiscent of amyotrophic lateral sclerosis. Journal of Occupational Medicine: Official publication of the Industrial Medical Association. 1978;20(10):667–9.

    CAS  Google Scholar 

  25. Rustam H, Von Burg R, Amin-Zaki L, El Hassani S. Evidence for a neuromuscular disorder in methylmercury poisoning. Arch Environ Health. 1975;30(4):190–5.

    Article  CAS  PubMed  Google Scholar 

  26. Eto K. Pathology of Minamata disease. Toxicol Pathol. 1997;25(6):614–23.

    Article  CAS  PubMed  Google Scholar 

  27. Goncalves A, Goncalves NN. Human exposure to mercury in the Brazilian Amazon: a historical perspective. Pan Am J Public Health. 2004;16(6):415–9.

    Article  Google Scholar 

  28. Grandjean P, Budtz-Jorgensen E, White RF, Jorgensen PJ, Weihe P, Debes F, et al. Methylmercury exposure biomarkers as indicators of neurotoxicity in children aged 7 years. Am J Epidemiol. 1999;150(3):301–5.

    Article  CAS  PubMed  Google Scholar 

  29. Madsen ER, DeWeese AD, Kmiecik NE, Foran JA, Chiriboga ED. Methods to develop consumption advice for methylmercury-contaminated walleye harvested by Ojibwe tribes in the 1837 and 1842 ceded territories of Michigan, Minnesota, and Wisconsin, USA. Integr Environ Assess Manag. 2008;4(1):118–24.

    Article  CAS  PubMed  Google Scholar 

  30. Hansen JC, Tarp U, Bohm J. Prenatal exposure to methyl mercury among Greenlandic polar Inuits. Arch Environ Health. 1990;45(6):355–8.

    Article  CAS  PubMed  Google Scholar 

  31. Myers GJ, Davidson PW. Prenatal methylmercury exposure and children: neurologic, developmental, and behavioral research. Environ Health Perspect. 1998;106(Suppl 3):841–7.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chang LW. Neurotoxic effects of mercury—a review. Environ Res. 1977;14(3):329–73.

    Article  CAS  PubMed  Google Scholar 

  33. • Weiss B, Clarkson TW, Simon W. Silent latency periods in methylmercury poisoning and in neurodegenerative disease. Environ Health Perspect. 2002;110(Suppl 5):851–4. This study highlights an important aspect of MeHg exposure (long latency periods) and how that can contribute to the presentation of neurodegenerative diseases

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Praline J, Guennoc AM, Limousin N, Hallak H, de Toffol B, Corcia P. ALS and mercury intoxication: a relationship? Clin Neurol Neurosurg. 2007;109(10):880–3.

    Article  PubMed  Google Scholar 

  35. Schwarz S, Husstedt I, Bertram HP, Kuchelmeister K. Amyotrophic lateral sclerosis after accidental injection of mercury. J Neurol Neurosurg Psychiatry. 1996;60(6):698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moller-Madsen B. Localization of mercury in CNS of the rat. III. Oral administration of methylmercuric chloride (CH3HgCl). Fundamental and Applied Toxicology: official journal of the Society of Toxicology. 1991;16(1):172–87.

    Article  CAS  Google Scholar 

  37. Moller-Madsen B. Localization of mercury in CNS of the rat. An autometallographic study. Pharmacology & Toxicology. 1994;75(Suppl 1):1–41.

    Article  CAS  Google Scholar 

  38. Su M, Wakabayashi K, Kakita A, Ikuta F, Takahashi H. Selective involvement of large motor neurons in the spinal cord of rats treated with methylmercury. J Neurol Sci. 1998;156(1):12–7.

    Article  PubMed  Google Scholar 

  39. Chapman LA, Chan HM. Inorganic mercury pre-exposures protect against methyl mercury toxicity in NSC-34 (neuron x spinal cord hybrid) cells. Toxicology. 1999;132(2–3):167–78.

    Article  CAS  PubMed  Google Scholar 

  40. • Ramanathan G, Atchison WD. Ca2+ entry pathways in mouse spinal motor neurons in culture following in vitro exposure to methylmercury. Neurotoxicology. 2011;32(6):742–50. This study demonstrates a key mechanism by which MeHg results in neuronal dysfunction

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yuan Y, Atchison WD. Methylmercury-induced increase of intracellular Ca2+ increases spontaneous synaptic current frequency in rat cerebellar slices. Mol Pharmacol. 2007;71(4):1109–21.

    Article  CAS  PubMed  Google Scholar 

  42. Limke TL, Heidemann SR, Atchison WD. Disruption of intraneuronal divalent cation regulation by methylmercury: are specific targets involved in altered neuronal development and cytotoxicity in methylmercury poisoning? Neurotoxicology. 2004;25(5):741–60.

    Article  CAS  PubMed  Google Scholar 

  43. Limke TL, Atchison WD. Acute exposure to methylmercury opens the mitochondrial permeability transition pore in rat cerebellar granule cells. Toxicol Appl Pharmacol. 2002;178(1):52–61.

    Article  CAS  PubMed  Google Scholar 

  44. Aschner M, Syversen T, Souza DO, Rocha JB, Farina M. Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity. Braz J Med Biol Res. 2007;40(3):285–91.

    Article  CAS  PubMed  Google Scholar 

  45. • Dreiem A, Seegal RF. Methylmercury-induced changes in mitochondrial function in striatal synaptosomes are calcium-dependent and ROS-independent. Neurotoxicology. 2007;28(4):720–6. This study demonstrates the role of calcium dysregulation in MeHg exposure

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aschner M, Yao CP, Allen JW, Tan KH. Methylmercury alters glutamate transport in astrocytes. Neurochem Int. 2000;37(2–3):199–206.

    Article  CAS  PubMed  Google Scholar 

  47. Edwards JR, Marty MS, Atchison WD. Comparative sensitivity of rat cerebellar neurons to dysregulation of divalent cation homeostasis and cytotoxicity caused by methylmercury. Toxicol Appl Pharmacol. 2005;208(3):222–32.

    Article  CAS  PubMed  Google Scholar 

  48. Limke TL, Otero-Montanez JK, Atchison WD. Evidence for interactions between intracellular calcium stores during methylmercury-induced intracellular calcium dysregulation in rat cerebellar granule neurons. J Pharmacol Exp Ther. 2003;304(3):949–58.

    Article  CAS  PubMed  Google Scholar 

  49. Marty MS, Atchison WD. Pathways mediating Ca2+ entry in rat cerebellar granule cells following in vitro exposure to methyl mercury. Toxicol Appl Pharmacol. 1997;147(2):319–30.

    Article  CAS  PubMed  Google Scholar 

  50. Levesque PC, Atchison WD. Disruption of brain mitochondrial calcium sequestration by methylmercury. J Pharmacol Exp Ther. 1991;256(1):236–42.

    CAS  PubMed  Google Scholar 

  51. • Bailey JM, Hutsell BA, Newland MC. Dietary nimodipine delays the onset of methylmercury neurotoxicity in mice. Neurotoxicology. 2013;37:108–17. This study demonstrates that MeHg-induced calicum dysreguation can be observed at the level of behavior, and that drugs acting on calcium can influence the deleterious effects of MeHg exposure

    Article  CAS  PubMed  Google Scholar 

  52. •• Johnson FO, Yuan Y, Hajela RK, Chitrakar A, Parsell DM, Atchison WD. Exposure to an environmental neurotoxicant hastens the onset of amyotrophic lateral sclerosis-like phenotype in human Cu2+/Zn2+ superoxide dismutase 1 G93A mice: glutamate-mediated excitotoxicity. J Pharmacol Exp Ther. 2011;338(2):518–27. This study directly demonstrates a GxE interaction in ALS

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bailey JM, Yuan Y, Atchison WD. Methylmercury exposure alters fluo-4 fluorescence in spinal cord slices of mice expressing the human Cu2+/Zn2+ superoxide dismutase 1 (hSOD1) gene mutation. Soc Neurosci. 2016. 46th Annual Meeting (ALS).

  54. Atchison WD. Is chemical neurotransmission altered specifically during methylmercury-induced cerebellar dysfunction? Trends Pharmacol Sci. 2005;26(11):549–57.

    Article  CAS  PubMed  Google Scholar 

  55. Doble A. The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther. 1999;81(3):163–221.

    Article  CAS  PubMed  Google Scholar 

  56. Rothstein JD, Tsai G, Kuncl RW, Clawson L, Cornblath DR, Drachman DB, et al. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol. 1990;28(1):18–25.

    Article  CAS  PubMed  Google Scholar 

  57. Mahajan SS, Ziff EB. Novel toxicity of the unedited GluR2 AMPA receptor subunit dependent on surface trafficking and increased Ca2+-permeability. Mol Cell Neurosci. 2007;35(3):470–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. • Mahajan SS, Thai KH, Chen K, Ziff E. Exposure of neurons to excitotoxic levels of glutamate induces cleavage of the RNA editing enzyme, adenosine deaminase acting on RNA 2, and loss of GLUR2 editing. Neuroscience. 2011;189:305–15. This study demonstrates the mechanics of glutamate excitotoxicity

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Colón-Rodríguez A, Hajela RK, Atchison WD. Brain region-dependent effects of methylmercury on expression of ligand and voltage-gated calcium channels in rat. The Toxicologist, Supplement to Toxicological Sciences. 2014;138(1):Abstract #1384.

    Google Scholar 

  60. Colón-Rodríguez A, Hajela RK, Atchison WD. Methylmercury alters intracellular calcium concentrations in human-induced pluripotent stem cell motor neurons in a concentration-dependent manner. The Toxicologist, Supplement to Toxicological Sciences. 2017. Abstract #1143.

  61. Su XW, Nandar W, Neely EB, Simmons Z, Connor JR. Statins accelerate disease progression and shorten survival in SOD1(G93A) mice. Muscle Nerve. 2016;54(2):284–91.

    Article  CAS  PubMed  Google Scholar 

  62. Powers S, Kwok S, Lovejoy E, Lavin T, Sher R. Embryonic exposure to the environmental neurotoxin BMAA negatively impacts early neuronal development and progression of neurodegeneration in the Sod1-G93R zebrafish model of amyotrophic lateral sclerosis. Toxicol Sci. 2017; doi:10.1093/toxsci/kfx020.

    PubMed  Google Scholar 

  63. Bhattacharya A, Bokov A, Muller FL, Jernigan AL, Maslin K, Diaz V, Richardson A, Van Remmen H. Dietary restriction but not rapamycin extends disease onset and survival of the H46R/H48Q mouse model of ALS. Neurobiol Aging. 2012;33(8):1829–32.

    Article  CAS  PubMed  Google Scholar 

  64. Gianforcaro A, Hamadeh MJ. Dietary vitamin D3 supplementation at 10× the adequate intake improves functional capacity in the G93A transgenic mouse model of ALS, a pilot study. CNS Neurosci Ther. 2012;18(7):547–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by grants NIEHS T32 ES00725527 (Jordan M. Bailey, Alexandra Colón-Rodríguez) and NIH Grant R01 ES024064 (Jordan M. Bailey, Alexandra Colón-Rodríguez, William D. Atchison).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William D. Atchison.

Ethics declarations

Conflict of Interest

Jordan M. Bailey, Alexandra Colón-Rodríguez, and William D. Atchison declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Mechanisms of Toxicity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bailey, J.M., Colón-Rodríguez, A. & Atchison, W.D. Evaluating a Gene-Environment Interaction in Amyotrophic Lateral Sclerosis: Methylmercury Exposure and Mutated SOD1. Curr Envir Health Rpt 4, 200–207 (2017). https://doi.org/10.1007/s40572-017-0144-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-017-0144-1

Keywords

Navigation