Skip to main content
Log in

Validation of DEM modeling of sintering using an in situ X-ray microtomography analysis of the sintering of NaCl powder

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

This paper aims to validate the discrete element method (DEM) model of sintering. In situ X-ray microtomography experiments have been carried out at the ESRF to follow the sintering of NaCl powder, the properties of which are close to the DEM model assumptions. DEM simulations are then run using an improved implicit method. The comparison between experiment and simulation shows the capability of DEM to predict the behavior of the sample on both particle and packing scale. The main advantages and limits of this approach are finally discussed based on these results and those of previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lame O, Bellet D, Di Michiel M, Bouvard D (2003) In situ microtomography investigation of metal powder compacts during sintering. In: Proceedings of the E-MRS 2002 symposium I on synchrotron radiation and materials science. Nucl Instrum Methods Phys Res Sect B 200:287–294

  2. Lame O, Bellet D, Di Michiel M, Bouvard D (2004) Bulk observation of metal powder sintering by X-ray synchrotron. Acta Mater 52:977984

    Article  Google Scholar 

  3. Vagnon A, Lame O, Bouvard D, Michiel MD, Bellet D, Kapelski G (2006) Deformation of steel powder compacts during sintering: correlation between macroscopic measurement and in situ microtomography analysis. Acta Mater 54:513–522

    Article  Google Scholar 

  4. Olmos L, Martin CL, Bouvard D, Bellet D, Di Michiel M (2009) Investigation of the sintering of heterogeneous powder systems by synchrotron microtomography and discrete element simulation. J Am Ceram Soc 92:1492–1499

    Article  Google Scholar 

  5. Bordère S, Bernard D, Gendron D, Heintz JM (2004) Characterisation of elementary sintering processes using Monte Carlo simulation and X-ray computed microtomography. WIT press, Southampton, pp 23–32

  6. Cardona CG, Tikare V, Patterson BR, Olevsky E (2012) On sintering stress in complex powder compacts. J Am Ceram Soc 95:2372–2382

    Article  Google Scholar 

  7. Goodall R, Despois J-F, Mortensen A (2006) Sintering of NaCl powder: mechanisms and first stage kinetics. J Eur Ceram Soc 26:3487–3497

    Article  Google Scholar 

  8. Moreau JJ (1994) Some numerical methods in multibody dynamics: application to granular materials. Eur J Mech A Solids 13:93114

    MathSciNet  Google Scholar 

  9. Martin S, Guessasma M, Léchelle J, Fortin J, Saleh K, Adenot F (2014) Simulation of sintering using a non smooth discrete element method. Application to the study of rearrangement. Comput Mater Sci 84:31–39

    Article  Google Scholar 

  10. Brun E (2009) De l’imagerie 3D des structures l’éetude des mécanismes de transport en milieux cellulaires. Ph.D. Thesis, Université de Provence

  11. Henrich B, Wonisch A, Kraft T, Moseler M, Riedel H (2007) Simulations of the influence of rearrangement during sintering. Acta Mater 55:753762

    Article  Google Scholar 

  12. Martin CL, Camacho-Montes H, Olmos L, Bouvard D, Bordia RK (2009) Evolution of defects during sintering: discrete element simulations. J Am Ceram Soc 92:1435–1441

    Article  Google Scholar 

  13. Nosewicz S, Rojek J, Pietrzak K, Chmielewski M (2013) Viscoelastic discrete element model of powder sintering. Powder Technol 246:157–168

  14. Martin S (2014) Contribution à la modélisation du frittage en phase solide. Ph.D. Thesis, Compiègne

  15. Bouvard D, McMeeking RM (1996) Deformation of interparticle necks by diffusion-controlled creep. J Am Ceram Soc 79:666–672

    Article  Google Scholar 

  16. Martin C, Bordia R (2009) The effect of a substrate on the sintering of constrained films. Acta Mater 57:549558

    Article  Google Scholar 

  17. Sanni I, Bellenger E, Fortin J, Coorevits P (2010) A reliable algorithm to solve 3D frictional multi-contact problems: application to granular media. In: Proceedings of the thirteenth international congress on computational and applied mathematics (ICCAM-2008), Ghent, Belgium, 7–11 July 2008, volume 234, pp 1161–1171

  18. Rasp T, Kraft T, Riedel H (2013) Discrete element study on the infuence of initial coordination numbers on the sintering behaviour. Scripta Mater 69:805–808

    Article  Google Scholar 

  19. Olmos L (2009) Etude du frittage de poudres par microtomographie in situ et modlisation discrte. Ph.D. Thesis, Institut polytechnique de Grenoble, Grenoble

  20. Kloss C, Goniva C, Hager A, Amberger S, Pirker S (2012) Models, algorithms and validation for opensource DEM and CFDDEM. Prog Comput Fluid Dyn Int J 12:140–152

    Article  MathSciNet  Google Scholar 

  21. Exner HE, Mller C (2009) Particle rearrangement and pore space coarsening during solid-state sintering. J Am Ceram Soc 92:1384–1390

    Article  Google Scholar 

  22. Martin S, Parekh R, Guessasma M, Léchelle J, Fortin J, Saleh K (2015) Study of the sintering kinetics of bimodal powders. A parametric dem study. Powder Technol 270:637–645

    Article  Google Scholar 

  23. Coble RL (1973) Effects of particle-size distribution in initial-stage sintering. J Am Ceram Soc 56:461–466

    Article  Google Scholar 

  24. Wulff G (1901) Zur frage der geschwindigkeit des wachstums und der auflösung der kristallflächen. Z. Kristallogr 34:449–530

    Google Scholar 

  25. Krill C III, Chen L-Q (2002) Computer simulation of 3-D grain growth using a phase-field model. Acta Mater 50:3059–3075

    Article  Google Scholar 

  26. Bruchon J, Pino-Muoz D, Valdivieso F, Drapier S (2012) Finite element simulation of mass transport during sintering of a granular packing, part I. Surface and lattice diffusions. J Am Ceram Soc 95:2398–2405

    Article  Google Scholar 

  27. Shinagawa K (2014) Simulation of grain growth and sintering process by combined phase-field/discrete-element method. Acta Mater 66:360–369

    Article  Google Scholar 

Download references

Acknowledgments

Many thanks to Xavière Iltis from the CEA/DEN/CAD/DEC/SFER/LCU for the EBSD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Martin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, S., Navarro, S., Palancher, H. et al. Validation of DEM modeling of sintering using an in situ X-ray microtomography analysis of the sintering of NaCl powder. Comp. Part. Mech. 3, 525–532 (2016). https://doi.org/10.1007/s40571-015-0062-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-015-0062-7

Keywords

Navigation