Skip to main content
Log in

Numerical investigations of the force experienced by a wall subject to granular lid-driven flows: regimes and scaling of the mean force

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Discrete element simulations are used to model a two-dimensional gravity-free granular sample, which is trapped between two smooth sidewalls and one bottom rough wall while being subject to a constant shearing velocity at the top under a given confinement pressure. This system, inspired by conventional fluid mechanics, is called a granular lid-driven cavity. Attention is firstly paid to the time-averaged dynamics of the grains once a steady-state is reached. Strong spatial heterogeneities associated with a large-scale vortex formed within the whole volume of the lid-driven cavity are observed. The mean steady force on the sidewall facing the shearing velocity is then investigated in detail for different cavity lengths, shearing velocities and confinement pressures at the top. The ratio of the force on the latter wall to the top confinement pressure force is not constant but depends on both the shearing velocity and the confinement pressure. Above a critical value of the cavity length relative to the wall height and over a wide range of both shearing velocity and top confinement pressure, all data merge into a one-to-one relation between the mean force scaled by the top pressure force and the macroscopic inertial number of the lid-driven cavity. This result reveals the key role played by the inertial rheology of the granular material in the granular force transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wieghardt K (1975) Experiments in granular flow. Ann Rev Fluid Mech 7:89–114. doi:10.1146/annurev.fl.07.010175.000513

    Article  MATH  Google Scholar 

  2. Katsuragi H, Durian DJ (2007) Unified force law for granular impact cratering. Nat Phys 3:420–423

    Article  Google Scholar 

  3. Faug T, Caccamo P, Chanut B (2012) A scaling law for impact force of a granular avalanche flowing past a wall. Geophys Res Lett 39(23):L23,401. doi:10.1029/2012GL054112

    Article  Google Scholar 

  4. Faug T, Caccamo P, Chanut B (2011) Equation for the force experienced by a wall overflowed by a granular avalanche: experimental verification. Phys Rev E 84:051301. doi:10.1103/PhysRevE.84.051301

    Article  Google Scholar 

  5. Faug T, Beguin R, Chanut B (2009) Mean steady granular force on a wall overflowed by free-surface gravity-driven dense flows. Phys Rev E 80:021305. doi:10.1103/PhysRevE.80.021305

    Article  Google Scholar 

  6. Chanut B, Faug T, Naaim M (2010) Time-varying force from dense granular avalanches on a wall. Phys Rev E 82:041302. doi:10.1103/PhysRevE.82.041302

    Article  Google Scholar 

  7. Shankar P, Deshpande M (2000) Fluid mechanics in the driven cavity. Ann Rev Fluid Mech 32:93–136. doi:10.1146/annurev.fluid.32.1.93

    Article  MathSciNet  MATH  Google Scholar 

  8. Albert I, Tegzes P, Albert R, Sample JG, Barabási AL, Vicsek T, Kahng B (2001) Stick-slip fluctuations in granular drag. Phys Rev E 64:031307. doi:10.1103/PhysRevE.64.031307

    Article  Google Scholar 

  9. Albert R, Pfeifer MA, Barabási AL, Schiffer P (1999) Slow drag in a granular mediu. Phys Rev Lett 82:205–208. doi:10.1103/PhysRevLett.82.205

    Article  Google Scholar 

  10. Geng J, Behringer RP (2005) Slow drag in two-dimensional granular media. Phys Rev E 71:011302. doi:10.1103/PhysRevE.71.011302

    Article  Google Scholar 

  11. Boudet JF, Kellay H (2010) rag coefficient for a circular obstacle in a quasi-two-dimensional dilute supersonic granular flow. Phys Rev Lett 105:104501. doi:10.1103/PhysRevLett.105.104501

    Article  Google Scholar 

  12. Buchholtz V, Pöschel T (1998) Interaction of a granular stream with an obstacle. Granul Matter 1(1):33–41. doi:10.1007/PL00010908

    Article  MATH  Google Scholar 

  13. Takehara Y, Fujimoto S, Okumura K (2010) High-velocity drag friction in dense granular media. Europhys Lett 92(3):44003

    Article  Google Scholar 

  14. Wassgren CR, Cordova JA, Zenit R, Karion A (2003) Dilute granular flow around an immersed cylinder. Phys Fluids 15(11):3318–3330. doi:10.1063/1.1608937

    Article  MATH  Google Scholar 

  15. Chehata D, Zenit R, Wassgren CR (2003) Dense granular flow around an immersed cylinder. Phys Fluids (1994-present) 15(6):1622–1631. doi:10.1063/1.1571826

    Article  MATH  Google Scholar 

  16. Brzinski TA, Mayor P, Durian DJ (2013) Depth-dependent resistance of granular media to vertical penetration. Phys Rev Lett 111:168002. doi:10.1103/PhysRevLett.111.168002

    Article  Google Scholar 

  17. Seguin A, Bertho Y, Gondret P, Crassous J (2011) Dense granular flow around a penetrating object: experiment and hydrodynamic model. Phys Rev Lett 107:048001. doi:10.1103/PhysRevLett.107.048001

    Article  Google Scholar 

  18. Seguin A, Bertho Y, Martinez F, Crassous J, Gondret P (2013) Experimental velocity fields and forces for a cylinder penetrating into a granular medium. Phys Rev E 87:012201. doi:10.1103/PhysRevE.87.012201

    Article  Google Scholar 

  19. Brzinski TA III, Durian DJ (2010) Characterization of the drag force in an air-moderated granular bed. Soft Matter 6:3038–3043. doi:10.1039/B926180J

    Article  Google Scholar 

  20. Guillard F, Forterre Y, Pouliquen O (2013) Depth-independent drag force induced by stirring in granular media. Phys Rev Lett 110:138–303. doi:10.1103/PhysRevLett.110.138303

    Article  Google Scholar 

  21. Guillard F, Forterre Y, Pouliquen O (2015) Origin of a depth-independent drag force induced by stirring in granular media. Phys Rev E 91:022201. doi:10.1103/PhysRevE.91.022201

    Article  Google Scholar 

  22. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29:47–65. doi:10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  23. Šmilauer V, Gladky A, Kozicki J, Modenese C, Stránskỳ J (2010) Yade using and programming. In: Šmilauer V (ed.) Yade Documentation, 1st edn. The Yade Project http://yade-dem.org/doc/

  24. da Cruz F, Emam S, Prochnow M, Roux JN, Chevoir FMC (2005) Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys Rev E 72:021309. doi:10.1103/PhysRevE.72.021309

  25. Luding S (2008) Cohesive, frictional powders: contact models for tension. Granul Matter 10(4):235–246. doi:10.1007/s10035-008-0099-x

    Article  MathSciNet  MATH  Google Scholar 

  26. Schwager T, Pschel T (2007) Coefficient of restitution and lineardashpot model revisited. Granul Matter 9(6):465–469. doi:10.1007/s10035-007-0065-z

    Article  Google Scholar 

  27. Rognon P, Miller T, Einav I (2015) A circulation-based method for detecting vortices in granular materials. Granul Matter 17(2):177–188. doi:10.1007/s10035-015-0549-1

    Article  Google Scholar 

  28. Miller T, Rognon P, Metzger B, Einav I (2013) Eddy viscosity in dense granular flows. Phys Rev Lett 111:058002. doi:10.1103/PhysRevLett.111.058002

    Article  Google Scholar 

  29. Jop P, Forterre Y, Pouliquen O (2006) A constitutive law for dense granular flows. Nature 444:727–730

    Article  Google Scholar 

  30. GDRMiDi (2004) On dense granular flows. Eur Phys J E 14:341–365

  31. Singh A, Magnanimo V, Saitoh K, Luding S (2015) The role of gravity or pressure and contact stiffness in granular rheology. New J Phys 17(4):043028

    Article  Google Scholar 

  32. Singh A, Magnanimo V, Saitoh K, Luding S (2014) Effect of cohesion on shear banding in quasistatic granular materials. Phys Rev E 90:022202. doi:10.1103/PhysRevE.90.022202

    Article  Google Scholar 

  33. Kamrin K, Koval G (2012) Nonlocal constitutive relation for steady granular flow. Phys Rev Lett 108(17):178301

    Article  Google Scholar 

  34. Bouzid M, Trulsson M, Claudin P, Clément E, Andreotti B (2013) Nonlocal rheology of granular flows across yield conditions. Phys Rev Lett 111:238301. doi:10.1103/PhysRevLett.111.238301

    Article  Google Scholar 

  35. Weinhart T, Hartkamp R, Thornton AR, Luding S (2013) Coarse-grained local and objective continuum description of three-dimensional granular flows down an inclined surface. Phys Fluids 25(1):1–34

    Google Scholar 

  36. Miller B, O’Hern C, Behringer RP (1996) Stress fluctuations for continuously sheared granular materials. Phys Rev Lett 77:3110–3113. doi:10.1103/PhysRevLett.77.3110

    Article  Google Scholar 

  37. Soller R, Koehler SA (2007) Random fluctuations and oscillatory variations of drag forces on vanes rotating in granular beds. Europhys Lett 80(1):14004

    Article  Google Scholar 

  38. Gardel E, Sitaridou E, Facto K, Keene E, Hattam K, Easwar N, Menon N (2009) Dynamical fluctuations in dense granular flows. Philos Trans R Soc London A 367(1909):5109–5121. doi:10.1098/rsta.2009.0189

    Article  Google Scholar 

  39. Longhi E, Easwar N, Menon N (2002) Large force fluctuations in a flowing granular medium. Phys Rev Lett 89:045501. doi:10.1103/PhysRevLett.89.045501

    Article  Google Scholar 

  40. Corwin EI, Hoke ET, Jaeger HM, Nagel SR (2008) Temporal force fluctuations measured by tracking individual particles in granular materials under shear. Phys Rev E 77:061308. doi:10.1103/PhysRevE.77.061308

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the LabEx Tec21 (Investissements d’Avenir: grant agreement No. ANR-11-LABX-0030). Thierry Faug and Mohamed Naaim are grateful to the financial support by the People Programme (Marie Curie Actions) of the EU 7th FP under REA Grant Agreement No. 622899 (FP7-PEOPLE-2013-IOF, GRAINPACT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Kneib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kneib, F., Faug, T., Dufour, F. et al. Numerical investigations of the force experienced by a wall subject to granular lid-driven flows: regimes and scaling of the mean force. Comp. Part. Mech. 3, 293–302 (2016). https://doi.org/10.1007/s40571-015-0060-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-015-0060-9

Keywords

Navigation