Skip to main content
Log in

OSCAR-Na: A New Code for Simulating Corrosion Product Contamination in SFR

  • Published:
Metallurgical and Materials Transactions E

Abstract

A code named OSCAR-Na has been developed to calculate the mass transfer of corrosion products in the primary circuit of sodium fast reactors (SFR). It is based on a solution/precipitation model, including diffusion in the steel (enhanced under irradiation), diffusion through the sodium boundary layer, equilibrium concentration of each element, and velocity of the interface (bulk corrosion or deposition). The code uses a numerical method for solving the diffusion equation in the steel and the complete mass balance in sodium for all elements. Corrosion and deposition rates are mainly determined by the iron equilibrium concentration in sodium and its oxygen-enhanced dissolution rate. All parameters of the model have been assessed from a literature review, but iron solubility had to be adjusted. A simplified primary system description of PHENIX French SFR was able to assess the correct amounts and profiles of contamination on heat exchanger surfaces for the main radionuclides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.W. Thorley, P. Michaille, Fission and Corrosion Product Behaviour in Liquid Metal Fast Breeder Reactors (LMFBRs) (IAEA TECDOC 687, Vienna, 1993)

    Google Scholar 

  2. J.B. Génin: in the International Conference on Water Chemistry of Nuclear Reactors Systems, NPC, Quebec (Canada) (2010).

  3. W.F. Brehm, R.P. Anantatmula in Material Behavior and Physical Chemistry in Liquid Metal Systems, ed. by H.U. Borgstedt (Plenum Press, New York, 1982), pp. 193–204

  4. A.R. Keeton, C. Bagnall: Second International Conference on Liquid Metal Technology in Energy Production, Richland. IAEA Conf-800401-P1 UC-79A, ed., by J.M. Dahlke, 1980, pp. 7.18–17.25.

  5. B.H. Kolster, J. Nucl. Mater. 55, 155–68 (1975)

    Article  Google Scholar 

  6. M. Schad, Nucl. Technol. 50, 267–88 (1980)

    Google Scholar 

  7. T. Suzuki, I. Mutoh, Mater. Trans. JIM 31, 786–88 (1990)

    Article  Google Scholar 

  8. J.R. Weeks, H.S. Isaacs, Adv. Corros. Sci. Technol. 3, 1–66 (1973)

    Article  Google Scholar 

  9. M.V. Polley, G. Skyrme, J. Nucl. Mater. 75, 226–37 (1978)

    Article  Google Scholar 

  10. K. Iizawa, S. Suzuki, M. Tamura, S. Seki, T. Hikichi: in Fission and Corrosion Product Behaviour in Primary Circuit of LMFBRs, ed. by H. Feuerstein, A.W. Thorley (IWGFR/64, KfK 4279, Karlsruhe, 1987), pp. 227–69

  11. L. Brissonneau, J. Nucl. Mater. 423, 67–78 (2012)

    Article  Google Scholar 

  12. J. Zhang, T.F. Marcille, R. Kapernick, Corrosion 64, 563–73 (2008)

    Article  Google Scholar 

  13. R.E. Treybal, Mass Transfer Operations (Mc Graw-Hill, New York, 1965)

    Google Scholar 

  14. C. Guminski in Material Behavior and Physical Chemistry in Liquid Metal Systems 2, ed. by H.U. Borgstedt (Plenum Press, Karlsruhe, 1995), pp. 345–56

    Google Scholar 

  15. E.L. Dunning: The Thermodynamic and Transport Properties of Sodium and Sodium Vapor, Argonne National Laboratory, 1960.

  16. K.T. Claxton, J.G. Collier, J. Br. Nucl. Energy Soc. 12, 63–75 (1973)

    Google Scholar 

  17. R. Sizmann, J. Nucl. Mater. 69&70, 386–412 (1978)

    Article  Google Scholar 

  18. A.F. Smith, R. Hales, Met. Sci. 9, 181–84 (1975)

    Article  Google Scholar 

  19. R.A. Perkins, R.A. Padgett, N.K. Tunali, Metall. Trans. 4, 2535–40 (1973)

    Article  Google Scholar 

  20. R.A. Perkins, Metall. Trans. 4, 1665–69 (1973)

    Article  Google Scholar 

  21. R.V. Patil, G.P. Tiwari, B.D. Sharma, Met. Sci. 14, 525–28 (1980)

    Article  Google Scholar 

  22. C.F. Clement, P. Hawtin, and M.H. Cooper ed., American Nuclear Society, International Conference on Liquid Metal Technology in Energy Production Champion, Hinsdale, 1976, pp. 393–99.

  23. M.V. Polley, G. Skyrme, J. Nucl. Mater. 66, 221–35 (1977)

    Article  Google Scholar 

  24. J. Zhang, P. Hosemann, S. Maloy, J. Nucl. Mater. 404, 82–96 (2010)

    Article  Google Scholar 

  25. M. Schad, Nucl. Technol. 50, 289–97 (1980)

    Google Scholar 

  26. S. Ukai, E. Yoshida, Y. Enokido, I. Nihei, Materials for Nuclear Reactor Core Application (BNES, London, 1987), pp. 341–48

    Google Scholar 

  27. T. Furukawa, S. Kato, E. Yoshida, J. Nucl. Mater. 392, 249–54 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Brissonneau.

Additional information

Manuscript submitted November 26, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Génin, JB., Brissonneau, L. & Gilardi, T. OSCAR-Na: A New Code for Simulating Corrosion Product Contamination in SFR. Metallurgical and Materials Transactions E 3, 291–298 (2016). https://doi.org/10.1007/s40553-016-0094-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40553-016-0094-9

Keywords

Navigation