Skip to main content
Log in

Fully Coupled Modeling of Burnup-Dependent (U1−y , Pu y )O2−x Mixed Oxide Fast Reactor Fuel Performance

  • Published:
Metallurgical and Materials Transactions E

Abstract

During the fast reactor nuclear fuel fission reaction, fission gases accumulate and form pores with the increase of fuel burnup, which decreases the fuel thermal conductivity, leading to overheating of the fuel element. The diffusion of plutonium and oxygen with high temperature gradient is also one of the important fuel performance concerns as it will affect the fuel material properties, power distribution, and overall performance of the fuel pin. In order to investigate these important issues, the (U1−y Pu y )O2−x fuel pellet is studied by fully coupling thermal transport, deformation, oxygen diffusion, fission gas release and swelling, and plutonium redistribution to evaluate the effects on each other with burnup-dependent models, accounting for the evolution of fuel porosity. The approach was developed using self-defined multiphysics models based on the framework of COMSOL Multiphysics to manage the nonlinearities associated with fast reactor mixed oxide fuel performance analysis. The modeling results showed a consistent fuel performance comparable with the previous results. Burnup degrades the fuel thermal conductivity, resulting in a significant fuel temperature increase. The fission gas release increased rapidly first and then steadily with the burnup increase. The fuel porosity increased dramatically at the beginning of the burnup and then kept constant as the fission gas released to the fuel free volume, causing the fuel temperature to increase. Another important finding is that the deviation from stoichiometry of oxygen affects greatly not only the fuel properties, for example, thermal conductivity, but also the fuel performance, for example, temperature distribution, porosity evolution, grain size growth, fission gas release, deformation, and plutonium redistribution. Special attention needs to be paid to the deviation from stoichiometry of oxygen in fuel fabrication. Plutonium content will also affect the fuel material properties and performance. However, it is not that significant compared to the deviation from stoichiometry of oxygen due to the similar material properties of UO2 and PuO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Maeda, S. Sasaki, M. Kato, Y. Kihara, J. Nucl. Mater. 389(1), 78–84 (2009)

    Article  Google Scholar 

  2. A. Karahan: Ph.D. Thesis, Massachusetts Institute of Technology, 2009

  3. M. Ishida, T. Ogata, M. Kinoshita, Nucl. Technol. 104(1), 37–51 (1993)

    Google Scholar 

  4. K. Lassmann, J. Nucl. Mater. 150(1), 10–16 (1987)

    Article  Google Scholar 

  5. C.F. Clement, M.W. Finnis, J. Nucl. Mater. 75(1), 193–200 (1978)

    Article  Google Scholar 

  6. T. Ishii, T. Asaga, J. Nucl. Mater. 294(1–2), 13–17 (2001)

    Article  Google Scholar 

  7. B. Mihaila, M. Stan, J. Crapps, J. Nucl. Mater. 430(1–3), 221–228 (2012)

    Article  Google Scholar 

  8. B. Mihaila, M. Stan, J. Crapps, D. Yun, J. Nucl. Mater. 433(1–3), 132–142 (2013)

    Article  Google Scholar 

  9. M. Teague, M. Tonks, S. Novascone, S. Hayes, J. Nucl. Mater. 444(1–3), 161–169 (2014)

    Article  Google Scholar 

  10. D. Yun, M. Stan, J. Mater. Res. 28(17), 2308–2315 (2013)

    Article  Google Scholar 

  11. D. Olander: Fundamental Aspects of Nuclear Reactor Fuel Elements, Technical Information Center, Energy Research and Development Administration, 1976

  12. J.C. Ramirez, M. Stan, P. Cristea, J. Nucl. Mater. 359(3), 174–184 (2006)

    Article  Google Scholar 

  13. C. Sari, G. Schumacher, J. Nucl. Mater. 61(2), 192–202 (1976)

    Article  Google Scholar 

  14. S.R.D. Groot, Thermodynamics of Irreversible Processes (North Holland Publ. Co, Amsterdam, 1951)

    Google Scholar 

  15. C. Korte, J. Janek, and H. Timm: Solid State Ionics, 1997, vol. 101–103, Part 1(0), pp. 465–70

  16. D. Morgan: MASc Thesis, Royal Military College of Canada, 2007

  17. C.M. Allison, G.A. Berna, R. Chambers, E.W. Coryell, K.L. Davis, D.L. Hagrman, D.T. Hagrman, N.L. Hampton, J.K. Hohorst, R.E. Mason, M.L. McComas, K.A. McNeil, R.L. Miller, C.S. Olsen, G.A. Reymann, and L.J. Siefken: SCDAP/RELAP5/MOD3.1 Code Manual Volume IV: MATPRO-A Library of Materials Properties for Light-Water-Reactor Accident Analysis, NUREG/CR-6150, 1993

  18. K. Shaheen: Ph.D. Thesis, Royal Military College of Canada, 2011

  19. A.H. Booth: A Method of Calculating Fission Gas Diffusion from UO2 Fuel and Its Application to the X-2-f Loop Test. AECL, 1957. 496

  20. C. Sari, J. Nucl. Mater. 137(2), 100–106 (1986)

    Article  Google Scholar 

  21. G.V. Kidson, J. Nucl. Mater. 88(2–3), 299–308 (1980)

    Article  Google Scholar 

  22. R.J. White, M.O. Tucker, J. Nucl. Mater. 118(1), 1–38 (1983)

    Article  Google Scholar 

  23. J.J. Carbajo, G.L. Yoder, S.G. Popov, V.K. Ivanov, J. Nucl. Mater. 299(3), 181–198 (2001)

    Article  Google Scholar 

  24. J.K. Fink, J. Nucl. Mater. 279(1), 1–18 (2000)

    Article  Google Scholar 

  25. R.L. Gibby, L. Leibowitz, J.F. Kerrisk, D.G. Cliffton, J. Nucl. Mater. 50(2), 155–161 (1974)

    Article  Google Scholar 

  26. I.J. Hastings, L.E. Evans, J. Am. Ceram. Soc. 62(3–4), 217–218 (1979)

    Article  Google Scholar 

  27. V. Di Marcello, A. Schubert, J. van de Laar, and P. Van Uffelen: Revision of the transuranus PUREDI model, Technical report for the JRC-ITU Action No. 52201—Safety of Nuclear Fuels and Fuel cycles, European Commission, Joint Research Centre, Institute for Transuranium Elements, 2012

Download references

Acknowledgments

The financial support from the Hong Kong Early Career Scheme Grant (No. 9048010) and CityU Start-up and Equipment Grants (No. 7200343 and No. 9610289) is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzhong Zhou.

Additional information

Manuscript submitted July 23, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Zhou, W. & Zhou, W. Fully Coupled Modeling of Burnup-Dependent (U1−y , Pu y )O2−x Mixed Oxide Fast Reactor Fuel Performance. Metallurgical and Materials Transactions E 3, 18–27 (2016). https://doi.org/10.1007/s40553-015-0065-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40553-015-0065-6

Keywords

Navigation