Skip to main content
Log in

Cardiac autonomic modulation in non-frail, pre-frail and frail elderly women: a pilot study

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Frailty has been defined as a geriatric syndrome that results in high vulnerability to health adverse outcomes. This increased vulnerability state results from dysregulation of multiple physiological systems and its complex interactions. Thus, assessment of physiological systems integrity and of its dynamic interactions seems to be useful in the context of frailty management. Heart rate variability (HRV) analysis provides information about autonomic nervous system (ANS) function, which is responsible to control several physiologic functions. This study investigated the cardiac autonomic modulation by HRV analysis in community-dwelling elderly women classified as non-frail, pre-frail and frail. Twenty-three elderly women were assigned to the following groups: non-frail (n = 8), pre-frail (n = 8) and frail (n = 7). HRV assessment was performed through linear and non-linear analysis of cardiac interval variability. It was observed a higher sympathetic and lower parasympathetic modulation in frail when compared with non-frail and pre-frail groups (p < 0.05) as indicated by frequency domain indices. Additionally, frail group had a decreased 2LV % pattern (that reflects parasympathetic modulation) in the symbolic analysis in comparison with non-frail group. These findings suggest that frail elderly women present an autonomic imbalance characterized by a shift towards sympathetic predominance. Thus, monitoring ANS function in the context of frailty management may be an important strategy to prevention, diagnosis and treatment of this syndrome and its consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chang Y-W, Chen W-L, Lin F-G, Fang W-H, Yen M-Y, Hsieh C-C, Kao T-W (2012) Frailty and its impact on health-related quality of life: a cross-sectional study on elder community-dwelling preventive health service users. PLoS One 7(5):e38079. doi:10.1371/journal.pone.0038079

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA, Cardiovascular Health Study Collaborative Research Group (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56(3):M146–M156

    Article  CAS  PubMed  Google Scholar 

  3. Aggar C, Ronaldson S, Cameron I (2011) Reactions to caregiving in frailty research. Arch Gerontol Geriatr 53(2):e138–e143. doi:10.1016/j.archger.2010.07.010

    Article  PubMed  Google Scholar 

  4. Theou O, Jones GR, Vandervoort AA, Jakobi JM (2010) Daily muscle activity and quiescence in non-frail, pre-frail, and frail older women. Exp Gerontol 45(12):909–917. doi:10.1016/j.exger.2010.08.008

    Article  PubMed  Google Scholar 

  5. Boyd CM, Xue Q-L, Simpson CF, Guralnik JM, Fried LP (2005) Frailty, hospitalization, and progression of disability in a cohort of disabled older women. Am J Med 118(11):1225–1231. doi:10.1016/j.amjmed.2005.01.062

    Article  PubMed  Google Scholar 

  6. de León Díaz, González E, Tamez Pérez HE, Gutiérrez Hermosillo H, Cedillo Rodríguez JA, Torres G (2012) Frailty and its association with mortality, hospitalization and functional dependence in Mexicans aged 60-years or older. Med Clin (Barc) 138(11):468–474. doi:10.1016/j.medcli.2011.03.024

    Article  Google Scholar 

  7. Ensrud KE, Ewing SK, Cawthon PM, Fink HA, Taylor BC, Cauley JA, Dam T-T, Marshall LM, Orwoll ES, Cummings SR, Osteoporotic Fractures in Men Research Group (2009) A comparison of frailty indexes for the prediction of falls, disability, fractures, and mortality in older men. J Am Geriatr Soc 57(3):492–498. doi:10.1111/j.1532-5415.2009.02137.x

    Article  PubMed Central  PubMed  Google Scholar 

  8. Fried LP, Ferrucci L, Darer J, Williamson JD, Anderson G (2004) Untangling the concepts of disability, frailty, and comorbidity: implications for improved targeting and care. J Gerontol A Biol Sci Med Sci 59(3):255–263

    Article  PubMed  Google Scholar 

  9. Varadhan R, Chaves PHM, Lipsitz LA, Stein PK, Tian J, Windham BG, Berger RD, Fried LP (2009) Frailty and impaired cardiac autonomic control: new insights from principal components aggregation of traditional heart rate variability indices. J Gerontol A Biol Sci Med Sci 64(6):682–687. doi:10.1093/gerona/glp013

    Article  PubMed  Google Scholar 

  10. Chaves PHM, Varadhan R, Lipsitz LA, Stein PK, Windham BG, Tian J, Fleisher LA, Guralnik JM, Fried LP (2008) Physiological complexity underlying heart rate dynamics and frailty status in community-dwelling older women. J Am Geriatr Soc 56(9):1698–1703. doi:10.1111/j.1532-5415.2008.01858.x

    Article  PubMed Central  PubMed  Google Scholar 

  11. Lipsitz LA (2002) Dynamics of stability: the physiologic basis of functional health and frailty. J Gerontol A Biol Sci Med Sci 57(3):B115–B125

    Article  PubMed  Google Scholar 

  12. Pumprla J, Howorka K, Groves D, Chester M, Nolan J (2002) Functional assessment of heart rate variability: physiological basis and practical applications. Int J Cardiol 84(1):1–14

    Article  PubMed  Google Scholar 

  13. Task Force (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 93(5):1043–1065

    Article  Google Scholar 

  14. Acharya UR, Kannathal N, Sing OW, Ping LY, Chua T (2004) Heart rate analysis in normal subjects of various age groups. Biomed Eng Online 3(1):24. doi:10.1186/1475-925X-3-24

    Article  Google Scholar 

  15. De Meersman RE, Stein PK (2007) Vagal modulation and aging. Biol Psychol 74(2):165–173. doi:10.1016/j.biopsycho.2006.04.008

    Article  PubMed  Google Scholar 

  16. Gerritsen J, TenVoorde BJ, Dekker JM, Kingma R, Kostense PJ, Bouter LM, Heethaar RM (2003) Measures of cardiovascular autonomic nervous function: agreement, reproducibility, and reference values in middle age and elderly subjects. Diabetologia 46(3):330–338. doi:10.1007/s00125-003-1032-9

    CAS  PubMed  Google Scholar 

  17. Liao D, Barnes RW, Chambless LE, Simpson RJ, Sorlie P, Heiss G (1995) Age, race, and sex differences in autonomic cardiac function measured by spectral analysis of heart rate variability–the ARIC study. Atherosclerosis Risk in Communities. Am J Cardiol 76(12):906–912

    Article  CAS  PubMed  Google Scholar 

  18. Umetani K, Singer DH, McCraty R, Atkinson M (1998) Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades. J Am Coll Cardiol 31(3):593–601

    Article  CAS  PubMed  Google Scholar 

  19. Dekker JM, Schouten EG, Klootwijk P, Pool J, Swenne CA, Kromhout D (1997) Heart rate variability from short electrocardiographic recordings predicts mortality from all causes in middle-aged and elderly men. The Zutphen Study. Am J Epidemiol 145(10):899–908

    Article  CAS  PubMed  Google Scholar 

  20. Thayer JF, Yamamoto SS, Brosschot JF (2010) The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol 141(2):122–131. doi:10.1016/j.ijcard.2009.09.543

    Article  PubMed  Google Scholar 

  21. Oliveira LFA, Silva VJD, Lages-Silva E, Molina RJ, Fuzissaki J, Niederhaur S, Prata A, Correia D (2010) Heart rate variability in chronic Chagas patients before and after treatment with benznidazole. Auton Neurosci 158(1–2):118–122. doi:10.1016/j.autneu.2010.05.004

    Article  PubMed  Google Scholar 

  22. Brucki SMD, Nitrini R, Caramelli P, Bertolucci PHF, Okamoto IH (2003) Suggestions for utilization of the mini-mental state examination in Brazil. Arq Neuropsiquiatr 61(3B):777–781

    Article  PubMed  Google Scholar 

  23. Fattori A, Santimaria MR, Alves RMA, Guariento ME, Neri AL (2013) Influence of blood pressure profile on frailty phenotype in community-dwelling elders in Brazil—FIBRA study. Arch Gerontol Geriatr 56(2):343–349. doi:10.1016/j.archger.2012.08.004

    Article  CAS  PubMed  Google Scholar 

  24. Taylor HL, Jacobs DR, Schucker B, Knudsen J, Leon AS, Debacker G (1978) A questionnaire for the assessment of leisure time physical activities. J Chronic Dis 31(12):741–755

    Article  CAS  PubMed  Google Scholar 

  25. Lustosa LP, Coelho FM, Silva JP, Pereira DS, Parentoni AN, Dias JMD, Dias RC, Pereira LSM (2010) The effects of a muscle resistance program on the functional capacity, knee extensor muscle strength and plasma levels of IL-6 and TNF-alpha in pre-frail elderly women: a randomized crossover clinical trial–a study protocol. Trials. doi:10.1186/1745-6215-11-82

    PubMed Central  PubMed  Google Scholar 

  26. Freire AN, Guerra RO, Alvarado B, Guralnik JM, Zunzunegui MV (2012) Validity and reliability of the short physical performance battery in two diverse older adult populations in Quebec and Brazil. J Aging Health 24(5):863–878. doi:10.1177/0898264312438551

    Article  PubMed  Google Scholar 

  27. Guralnik JM, Ferrucci L, Simonsick EM, Salive ME, Wallace RB (1995) Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N Engl J Med 332(9):556–561. doi:10.1056/NEJM199503023320902

    Article  CAS  PubMed  Google Scholar 

  28. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, Scherr PA, Wallace RB (1994) A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol 49(2):M85–M94

    Article  CAS  PubMed  Google Scholar 

  29. Porta A, Guzzetti S, Montano N, Furlan R, Pagani M, Malliani A, Cerutti S (2001) Entropy, entropy rate, and pattern classification as tools to typify complexity in short heart period variability series. IEEE Trans Biomed Eng 48(11):1282–1291. doi:10.1109/10.959324

    Article  CAS  PubMed  Google Scholar 

  30. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278(6):H2039–H2049

    CAS  PubMed  Google Scholar 

  31. Duque JJ, Silva LEV, Murta LO (2013) Open architecture software platform for biomedical signal analysis. Conf Proc IEEE Eng Med Biol Soc. doi:10.1109/EMBC.2013.6609943

    PubMed  Google Scholar 

  32. Guzzetti S, Borroni E, Garbelli PE, Ceriani E, Della Bella P, Montano N, Cogliati C, Somers VK, Malliani A, Mallani A, Porta A (2005) Symbolic dynamics of heart rate variability: a probe to investigate cardiac autonomic modulation. Circulation 112(4):465–470. doi:10.1161/CIRCULATIONAHA.104.518449

    Article  PubMed  Google Scholar 

  33. Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA 88(6):2297–2301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Lake DE, Richman JS, Griffin MP, Moorman JR (2002) Sample entropy analysis of neonatal heart rate variability. Am J Physiol Regul Integr Comp Physiol 283(3):R789–R797. doi:10.1152/ajpregu.00069.2002

    Article  CAS  PubMed  Google Scholar 

  35. Cohen H, Benjamin J, Geva AB, Matar MA, Kaplan Z, Kotler M (2000) Autonomic dysregulation in panic disorder and in post-traumatic stress disorder: application of power spectrum analysis of heart rate variability at rest and in response to recollection of trauma or panic attacks. Psychiatry Res 96(1):1–13

    Article  CAS  PubMed  Google Scholar 

  36. Kleiger RE, Miller JP, Bigger JT Jr, Moss AJ (1987) Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 59(4):256–262

    Article  CAS  PubMed  Google Scholar 

  37. Sajadieh A, Nielsen OW, Rasmussen V, Hein HO, Abedini S, Hansen JF (2004) Increased heart rate and reduced heart-rate variability are associated with subclinical inflammation in middle-aged and elderly subjects with no apparent heart disease. Eur Heart J 25(5):363–370. doi:10.1016/j.ehj.2003.12.003

    Article  PubMed  Google Scholar 

  38. Yeragani VK, Pohl R, Berger R, Balon R, Ramesh C, Glitz D, Srinivasan K, Weinberg P (1993) Decreased heart rate variability in panic disorder patients: a study of power-spectral analysis of heart rate. Psychiatry Res 46(1):89–103

    Article  CAS  PubMed  Google Scholar 

  39. Goldberger AL, Peng C-K, Lipsitz LA (2002) What is physiologic complexity and how does it change with aging and disease? Neurobiol Aging 23(1):23–26

    Article  PubMed  Google Scholar 

  40. Neves VR, Takahashi ACM, do Santos-Hiss MDB, Kiviniemi AM, Tulppo MP, de Moura SCG, Karsten M, Borghi-Silva A, Porta A, Montano N, Catai AM (2012) Linear and nonlinear analysis of heart rate variability in coronary disease. Clin Auton Res 22(4):175–183. doi:10.1007/s10286-012-0160-z

    Article  PubMed  Google Scholar 

  41. Goldstein DS, Bentho O, Park M-Y, Sharabi Y (2011) Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Exp Physiol 96(12):1255–1261. doi:10.1113/expphysiol.2010.056259

    Article  PubMed Central  PubMed  Google Scholar 

  42. Sleight P, La Rovere MT, Mortara A, Pinna G, Maestri R, Leuzzi S, Bianchini B, Tavazzi L, Bernardi L (1995) Physiology and pathophysiology of heart rate and blood pressure variability in humans: is power spectral analysis largely an index of baroreflex gain? Clin Sci 88(1):103–109

    Article  CAS  PubMed  Google Scholar 

  43. Guasti L, Mainardi LT, Baselli G, Simoni C, Cimpanelli M, Braga SS, Pedretti R, Castiglioni L, Maroni L, Codari R, Gaudio G, Grandi AM, Marino F, Cosentino M, Venco A (2010) Components of arterial systolic pressure and RR-interval oscillation spectra in a case of baroreflex failure, a human open-loop model of vascular control. J Hum Hypertens 24(6):417–426. doi:10.1038/jhh.2009.79

    Article  CAS  PubMed  Google Scholar 

  44. Billman GE (2013) The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front Physiol. doi:10.3389/fphys.2013.00026

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the staff of Health Unit Dona Aparecida Conceição Ferreira, Uberaba, Minas Gerais, Brazil.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Lourenço Katayama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katayama, P.L., Dias, D.P.M., Silva, L.E.V. et al. Cardiac autonomic modulation in non-frail, pre-frail and frail elderly women: a pilot study. Aging Clin Exp Res 27, 621–629 (2015). https://doi.org/10.1007/s40520-015-0320-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-015-0320-9

Keywords

Navigation