Skip to main content
Log in

Laser Welding of Thin Copper and Aluminum Sheets: Feasibility and Challenges in Continuous-Wave Welding of Dissimilar Metals

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

The present paper defines process windows for laser welding of thin copper and aluminum sheets in Al-Cu and Cu-Al lap-joint configurations, exploiting different process strategies and parameters. A single-mode continuous-wave (CW) laser source was exploited with both linear and wobbling strategies. In both cases the influence of several parameters, such as, laser power, spot dimensions and scanning speed on the resulting microstructure and joint strength was analyzed. The influence of one, two and three parallel beads on the maximum shear strength was also evaluated. The optimum process configurations were finally determined based on maximum joint strength in shear tests and the mixing of the two parent metals occurring after welding was determined by means of SEM-EDS analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Albright, C.E.: The fracture toughness testing of steel-aluminum deformation welds. Eng. Fract. Mech. 15(1–2), 193–203 (1981). https://doi.org/10.1016/0013-7944(81)90117-X

    Article  Google Scholar 

  2. Date, H., Kobayakawa, S., Naka, M.: Microstructure and bonding strength of impact-welded aluminium–stainless steel joints. J. Mater. Process. Technol. 85(1–3), 166–170 (1999). https://doi.org/10.1016/S0924-0136(98)00284-2

    Article  Google Scholar 

  3. Fukumoto, S., Tsubakino, H., Okita, K., Aritoshi, M., Tomita, T.: Amorphization by friction welding between 5052 aluminum alloy and 304 stainless steel. Scr. Mater. 42(8), 807–812 (2000). https://doi.org/10.1016/S1359-6462(00)00299-2

    Article  Google Scholar 

  4. Lee, W.B., Schmuecker, M., Mercardo, U.A., Biallas, G., Jung, S.B.: Interfacial reaction in steel–aluminum joints made by friction stir welding. Scr. Mater. 55(4), 355–358 (2006). https://doi.org/10.1016/j.scriptamat.2006.04.028

    Article  Google Scholar 

  5. Sierra, G., Peyre, P., Deschaux-Beaume, F., Stuart, D., Fras, G.: Steel to aluminium key-hole laser welding. Mater. Sci. Eng. A. 447(1–2), 197–208 (2007). https://doi.org/10.1016/j.msea.2006.10.106

    Article  Google Scholar 

  6. Mai, T.A., Spowage, A.C.: Characterisation of dissimilar joints in laser welding of steel–kovar, copper–steel and copper–aluminium. Mater. Sci. Eng. A. 374(1–2), 224–233 (2004). https://doi.org/10.1016/j.msea.2004.02.025

    Article  Google Scholar 

  7. Abbasi, M., Karimi Taheri, A., Salehi, M.T.: Growth rate of intermetallic compounds in Al/cu bimetal produced by cold roll welding process. J. Alloys Compd. 319(1–2), 233–241 (2001). https://doi.org/10.1016/S0925-8388(01)00872-6

    Article  Google Scholar 

  8. Lee, W.B., Bang, K.S., Jung, S.B.: Effects of intermetallic compound on the electrical and mechanical properties of friction welded cu/Al bimetallic joints during annealing. J. Alloys Compd. 390(1–2), 212–219 (2005). https://doi.org/10.1016/j.jallcom.2004.07.057

    Article  Google Scholar 

  9. Panaskar, N., Terkar, R.: A review on recent advances in friction stir lap welding of Aluminium and copper. Mater. Today. 4(8), 8387–8393 (2017). https://doi.org/10.1016/j.matpr.2017.07.182

    Google Scholar 

  10. Wei, Y., Li, J., Xiong, J., Zhang, F.: Investigation of interdiffusion and intermetallic compounds in Al–cu joint produced by continuous drive friction welding. Engr. Sci. Tech. 19(1), 90–95 (2016). https://doi.org/10.1016/j.jestch.2015.05.009

    Google Scholar 

  11. Fei, X., Ye, Y., Jin, L., Wang, H., Lv, S.: Special welding parameters study on cu/Al joint in laser-heated friction stir welding. J. Mater. Process. Technol. 256, 160–171 (2018). https://doi.org/10.1016/j.jmatprotec.2018.02.004

    Article  Google Scholar 

  12. Raoelison, R.N., Sapanathan, T., Buiron, N., Rachik, N.: Magnetic pulse welding of Al/Al and Al/cu metal pairs: consequences of the dissimilar combination on the interfacial behavior during the welding process. J. Manuf. Process. 20(1), 112–127 (2015). https://doi.org/10.1016/j.jmapro.2015.09.003

    Article  Google Scholar 

  13. Fujii, H.T., Endo, H., Sato, Y.S., Kokawa, H.: Interfacial microstructure evolution and weld formation during ultrasonic welding of Al alloy to cu. Mater. Charact. 139, 233–240 (2018). https://doi.org/10.1016/j.matchar.2018.03.010

    Article  Google Scholar 

  14. Weigl M, Albert F, Schmidt M. Enhancing the ductility of laser-welded copper-aluminum connections by using adapted filler materials. Phys. Procedia 2011;12(B):332–338. https://doi.org/10.1016/j.phpro.2011.03.141

  15. Solchenbach, T., Plapper, P.: Mechanical characteristics of laser braze-welded aluminium–copper connections. Opt. Laser Technol. 54, 249–256 (2013). https://doi.org/10.1016/j.optlastec.2013.06.003

    Article  Google Scholar 

  16. Lee, S.J., Nakamura, H., Kawahito, Y., Katayama, S.: Effect of welding speed on microstructural and mechanical properties of laser lap weld joints in dissimilar Al and cu sheets. Sci. Technol. Weld. Join. 19(2), 111–118 (2014). https://doi.org/10.1179/1362171813Y.0000000168

    Article  Google Scholar 

  17. Zuo, D., Hu, S., Shen, J., Xue, Z.: Intermediate layer characterization and fracture behavior of laser-welded copper/aluminum metal joints. Mater. Des. 58, 357–362 (2014). https://doi.org/10.1016/j.matdes.2014.02.004

    Article  Google Scholar 

  18. Stritt, P., Hagenlocher, C., Kizler, C., Weber, R., Rüttimann, C., Graf, T.: Laser spot welding of copper-aluminum joints using a pulsed dual wavelength laser at 532 and 1064nm. Phys. Procedia. 56, 759–767 (2014). https://doi.org/10.1016/j.phpro.2014.08.083

    Article  Google Scholar 

  19. Fetzer, F., Jarwitz, M., Stritt, P., Weber, R., Graf, T.: Fine-tuned remote laser welding of aluminum to copper with local beam oscillation. Phys. Procedia. 83, 455–462 (2016). https://doi.org/10.1016/j.phpro.2016.08.047

    Article  Google Scholar 

  20. Schmalen, P., Plapper, P., Peral, I., Titov, I., Vallcorba, O., Rius, J.: Composition and phases in laser welded Al-cu joints by synchrotron x-ray microdiffraction. Procedia CIRP. 74, 27–32 (2018). https://doi.org/10.1016/j.procir.2018.08.006

    Article  Google Scholar 

  21. Reisgen, U., Olschok, S., Jakobs, S., Holtum, N.: Influence of the degree of dilution with laser beam vacuum-welded cu-Al mixed joints on the electrical properties. Procedia CIRP. 74, 23–26 (2018). https://doi.org/10.1016/j.procir.2018.08.022

    Article  Google Scholar 

  22. Kermanidis, T., Christodoulou, P.I., Hontzopoulos, E., Haidemenopoulos, G.N., Kamoutsi, H., Zervaki, A.D.: Mechanical performance of laser spot-welded joints in Al-Al/cu solar thermal absorbers. Mater. Des. 155, 148–160 (2018). https://doi.org/10.1016/j.matdes.2018.05.052

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Flavia Lerra and Dr. Vincenzo Dimatteo for leading the experimental and characterization activity and Dr. Luca Poggio and Dr. Elena Ligabue for their technical and economic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ascari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fortunato, A., Ascari, A. Laser Welding of Thin Copper and Aluminum Sheets: Feasibility and Challenges in Continuous-Wave Welding of Dissimilar Metals. Lasers Manuf. Mater. Process. 6, 136–157 (2019). https://doi.org/10.1007/s40516-019-00085-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-019-00085-z

Keywords

Navigation