Skip to main content

Advertisement

Log in

Differential behaviours in two species of Eucalyptus exposed to aluminium

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

One of the limiting factors in the growth and development of plants is soil acidity due to high aluminium (Al) content. The aim of this research was to determine the micronutrient contents, photosynthetic pigments, gas exchange and morphological parameters, and to explain the possible tolerance mechanisms involved in two species of the genus Eucalyptus that were exposed to low and high aluminium concentrations. The experiment was conducted in a factorial completely randomised design, with two aluminium concentrations, viz., 0.08 (low) and 1.60 (high) mM Al, and two species, i.e., Eucalyptus platyphylla and Eucalyptus grandis. High Al concentration increased the Al contents in E. platyphylla and E. grandis by 104 and 29%, respectively. Significant reductions of Fe, Zn and Mn contents were detected only in E. platyphylla. Reductions on chlorophyll b and total chlorophyll were observed in both the species, which were more intense in the E. platyphylla. Net photosynthetic rate and water use efficiency increased under high Al concentration, whereas stomatal conductance and transpiration rate decreased in E. grandis. Growth characteristics decreased under high Al concentration in E. platyphylla and increased in E. grandis, while opposite response was observed in both species under low Al concentration. Our results described clearly that E. platyphylla is sensitive, while E. grandis is tolerant to Al. The tolerance mechanism of E. grandis can be explained by the maintenance of the iron, zinc and manganese supplies, combined with an increase in the chlorophyll a, net photosynthetic rate and water use efficiency, resulting in the mitigation of the Al effects on growth parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abichequer, A. D., Bohnen, H., & Anghinoni, I. (2003). Phosphorus uptake, translocation and utilization in wheat varieties under aluminum toxicity. Revista Brasileira de Ciência do Solo, 27(2), 373–378.

    Article  CAS  Google Scholar 

  • Apel, W., & Bock, R. (2009). Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin a conversion. Plant Physiology, 151(1), 59–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barceló, J., & Poschenrieder, C. (2002). Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminum toxicity and resistance: A review. Environmental and Experimental Botany, 48(1), 75–92.

    Article  Google Scholar 

  • Blum, A. (2005). Drought resistance, water-use efficiency, and yield potential-are they compatible, dissonant, or mutually exclusive? Crop and Pasture Science, 56(11), 1159–1168.

    Article  Google Scholar 

  • Borlotti, A., Vigani, G., & Zocchi, G. (2012). Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L.) plants. BMC Plant Biology, 12(1), 189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunner, I., & Sperisen, C. (2013). Aluminum exclusion and aluminum tolerance in woody plants. Frontiers in Plant Science, 4, 1–12.

    Article  Google Scholar 

  • Butrinowski, R. T., Butrinowski, I. T., Santos, E. L., Picolotto, P. R., Picolotto, R. A., & Santos, R. F. (2013). Water availability in initial development of seedlings in protected environment Eucalyptus grandis. Acta Iguazu, 2(3), 84–93.

    Google Scholar 

  • Cairo, P. A. R., Oliveira, L. E. M., Mesquita, C. A., & Cunha, R. L. (2009). Activity of rubisco and enzymes of sucrose synthesis and hydrolysis associated to latex productivity, in rubber tree clones [Hevea brasiliensis (Willd ex. Adr. de Juss.) Muell.-Arg] cultivated in Lavras, MG. Ciência e Agrotecnologia, 33(2), 369–376.

    Article  CAS  Google Scholar 

  • Chen, L. S., Qi, Y. P., Smith, B. R., & Liu, X. H. (2005). Aluminum-induced decrease in CO2 assimilation in citrus seedlings is unaccompanied by decreased activities of key enzymes involved in CO2 assimilation. Tree Physiology, 25(3), 317–324.

    Article  CAS  PubMed  Google Scholar 

  • Cruz, F. J. R., Lobato, A. K. S., Costa, R. C. L., Lopes, M. J. S., Neves, H. K. B., Oliveira Neto, C. F., et al. (2011). Aluminum negative impact on nitrate reductase activity, nitrogen compounds and morphological parameters in sorghum plants. Australian Journal of Crop Science, 5(6), 641–645.

    Google Scholar 

  • Gordin, C. R. B., Marques, R. F., Rosa, R. J. M., Santos, A. M., & Scalon, S. P. Q. (2013). Seedling emergence and early growth of jatropha plants exposed to aluminum. Semina: Ciências Agrárias, 34(1), 147–156.

    CAS  Google Scholar 

  • Goussias, C., Boussac, A., & Rutherford, W. (2002). Photosystem II and photosynthetic oxidation of water: An overview. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 357(1426), 1369–1381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartwig, I., Oliveira, A. C., Carvalho, F. I. F., Bertan, I., Silva, J. A. G., Schmidt, D. A. M., et al. (2007). Associated mechanisms of aluminum tolerance in plants. Semina: Ciências Agrárias, 28(2), 219–228.

    CAS  Google Scholar 

  • Haynes, R. J., & Mokolobate, M. S. (2001). Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: A critical review of the phenomenon and the mechanisms involved. Nutrient Cycling in Agroecosystems, 59(1), 47–63.

    Article  CAS  Google Scholar 

  • Hoagland, D. R., & Arnon, D. I. (1950). The water culture method for growing plants without soil. Berkeley: California Agricultural Experiment Station.

    Google Scholar 

  • Leite, D. C., Cunha, A. C. B., & Bizani, D. (2011). Analysis of macro and micronutrients in a comparative study of inert soil to bioremediation processes. Revista de Ciências Ambientais, 5(2), 93–102.

    Google Scholar 

  • Lichtenthaler, H., & Buschmann, C. (2001). Chlorophylls and carotenoids: Measurement and characterization by UV–VIS spectroscopy. In R.E. Wrolstad, T.E Acree, H. An, E.A. Decker, M.H. Penner, D.S. Reid, S.J. Schwartz, C.F. Shoemaker, P. Sporns (Eds.), Current protocols in food analytical chemistry (CPFA) (Suplement 1). New York: Wiley.

  • Lidon, F. C., Barreiro, M. G., Ramalho, J. C., & Lauriano, J. A. (1999). Effects of aluminum toxicity on nutrient accumulation in maize shoots: Implications on photosynthesis. Journal of Plant Nutrition, 22(2), 397–416.

    Article  CAS  Google Scholar 

  • Ma, C. C., Gao, Y. B., Guo, H. Y., & Wang, J. L. (2004). Photosynthesis, transpiration and water use efficiency of Caragana microphylla, C. intermedia and C. korshinskii. Photosynthetica, 42(1), 65–70.

    Article  CAS  Google Scholar 

  • Millaleo, R., Reyes-Díaz, M., Ivanov, A. G., Mora, M. L., & Alberdi, M. (2010). Manganese as essential and toxic element for plants: Transport, accumulation and resistance mechanisms. Journal of Soil Science and Plant Nutrition, 10(4), 470–481.

    Article  Google Scholar 

  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405–410.

    Article  CAS  PubMed  Google Scholar 

  • Moreno, J. C., Pizarro, L., Fuentes, P., Handford, M., Cifuentes, V., & Stange, C. (2013). Levels of lycopene b-cyclase 1 modulate carotenoid gene expression and accumulation in Daucus carota. PLoS ONE, 8(3), e58144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moustakas, M., Ouzounidou, G., Eleftheriou, E. P., & Lannoye, R. (1996). Indirect effects of aluminium stress on the function of the photosynthetic apparatus. Plant Physiology and Biochemistry, 34, 553–560.

    CAS  Google Scholar 

  • Nguyen, T. N., Mohapatra, P. K., & Fujita, K. (2003). Leaf necrosis is a visual symptom of the shift from growth stimulation to inhibition effect of Al in Eucalyptus camaldulensis. Plant Science, 165(1), 147–157.

    Article  CAS  Google Scholar 

  • Peixoto, H. P., Da Matta, F. M., & Da Matta, J. C. (2002). Responses of the photosynthetic apparatus to aluminum stress in two sorghum cultivars. Journal of Plant Nutrition, 25(4), 821–832.

    Article  CAS  Google Scholar 

  • Piñeros, M. A., & Kochian, L. V. (2001). A patch-clamp study on the physiology of aluminum toxicity and aluminum tolerance in maize. Identification and characterization of Al3+-induced anion channels. Plant Physiology, 125(1), 292–305.

    Article  PubMed  PubMed Central  Google Scholar 

  • Plhák, F. (2003). Nitrogen supply through transpiration mass flow can limit nitrogen nutrition of plants. Plant Soil and Environment, 49(10), 473–479.

    Google Scholar 

  • Ribeiro, M. A. Q., Almeida, A. A. F. D., Mielke, M. S., Gomes, F. P., Pires, M. V., & Baligar, V. C. (2013). Aluminum effects on growth, photosynthesis, and mineral nutrition of cacao genotypes. Journal of Plant Nutrition, 36(8), 1161–1179.

    Article  CAS  Google Scholar 

  • Ridolfi, M., Roupsard, O., Garrec, J. P., & Dreyer, E. (1996). Effects of a calcium deficiency on stomatal conductance and photosynthetic activity of Quercus robur seedlings grown on nutrient solution. Annales des Sciences Forestières, 53(2–3), 325–335.

    Article  Google Scholar 

  • Silva, I. R. D., Novais, R. F. D., Jham, G. N., Barros, N. F. D., Gebrim, F. O., Nunes, F. N., et al. (2004). Responses of eucalypt species to aluminum: The possible involvement of low molecular weight organic acids in the Al tolerance mechanism. Tree Physiology, 24(11), 1267–1277.

    Article  CAS  PubMed  Google Scholar 

  • Steel, R. G. D., Torrie, J. H., & Dickey, D. A. (2006). Principles and procedures of statistics: A biometrical approach. Moorpark: Academic Internet Publishers.

    Google Scholar 

  • Streit, N. M., Canto, M. W., & Hecktheuer, L. H. H. (2005). The chlorophylls. Ciência Rural, 35(3), 748–755.

    Article  CAS  Google Scholar 

  • Vert, G., Grotz, N., Dédaldéchamp, F., Gaymard, F., Guerinot, M. L., Briat, J. F., et al. (2002). IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. The Plant Cell, 14(6), 1223–1233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J. P., Raman, H., Zhang, G. P., Mendham, N., & Zhou, M. X. (2006). Aluminium tolerance in barley (Hordeum vulgare L.): Physiological mechanisms, genetics and screening methods. Journal of Zhejiang University Science B, 7(10), 769–787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by Fundação Amazônia de Amparo a Estudos e Pesquisa (FAPESPA/Brazil) and Universidade Federal Rural da Amazônia (UFRA/Brazil) to Lobato AKS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan K. S. Lobato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, L.F.F., Lima, M.D.R., Lima, E.J.A. et al. Differential behaviours in two species of Eucalyptus exposed to aluminium. Ind J Plant Physiol. 22, 107–113 (2017). https://doi.org/10.1007/s40502-017-0284-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-017-0284-1

Keywords

Navigation