Skip to main content
Log in

Biological testing of the chemically synthesized silver nano-particles for nitrate, chloride, potassium and sodium contents, and some physiological and biochemical characteristics of tomato plants

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Impact of chemically synthesized silver nano-particles (AgNPs) was evaluated on nitrate, potassium, sodium and chloride content, and physiological and chemical characteristics of Lycopersicon esculentum Mill (tomato) plants. Silver nano-particles were synthesized by chemical reduction of metal salt precursor silver nitrate. The average size of the nano-particles was 50 nm and the shape was spherical. The results showed a significant decrease in nitrate and potassium content of treated tomato plants. An 24-fold increase in sodium content of treated tomato plants was observed as well as reduction in chloride content at the highest concentration. A significant increase in ascorbic acid and total phenol content was observed in treated tomato plants, which simulated the stress condition induced by AgNPs. On the other hand soluble sugar, photosynthetic pigments content, root and shoot length, and number of leaves decreased significantly in treated plants. Silver nano-particles induced oxidative stress as inferred from the magnitude of the changes found in the physiological and biochemical parameters tested. Silver nano-particles can intensify the antagonistic relationship of potassium/sodium, and nitrate/chloride in relation to each other. Also increase in non-enzymatic components is a strategy to modulate AgNPs toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asharani, P. V., Wu, Y. L., Gong, Z., & Valiyaveettil, S. (2008). Toxicity of silver nano-particles in zebra fish models. Nanotechnology, 19, 255102–255110.

    Article  CAS  PubMed  Google Scholar 

  • Ashley, M. K., Grant, M., & Grabov, A. (2006). Plant responses to potassium deficiencies: A role for potassium transport proteins. Journal of Experimental Botany, 57, 425–436.

    Article  CAS  PubMed  Google Scholar 

  • Bazzaz, F. A., Carlson, R. W., & Rife, G. L. (1975). Inhibition of corn and sunflower photosynthesis lead. Physiologia Plantarum, 34, 326–329.

    Article  CAS  Google Scholar 

  • Benn, T. M., & Westerhoff, P. (2008). Nanoparticle silver released into water from commercially available sock fabrics. Environmental Science and Technology, 42, 4133–4139.

    Article  CAS  PubMed  Google Scholar 

  • Carmen, I. U., Chithra, P., Huang, Q., Takhistov, P., Liu, S., & Kokini, J. L. (2003). Nanotechnology: A new frontier in food science. Food Technology, 57, 24–29.

    Google Scholar 

  • Cataldo, D. A., Haroon, S. L., & Yougs, V. L. (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis, 6, 71–80.

    Article  CAS  Google Scholar 

  • Chaffei, C., Gouia, H., & Gorbel, M. H. (2003). Nitrogen metabolism of tomato under cadmium stress conditions. Journal of Plant Nutrition, 26, 1617–1634.

    Article  Google Scholar 

  • Choi, O., & Hu, Z. Q. (2008). Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environmental Science and Technology, 42, 4583–4588.

    Article  CAS  PubMed  Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for the determination of sugars and related substances. Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  • Eshel, A., & Waisel, Y. (1979). Distribution of sodium and chloride in leaves of Suaedamonoica. Physiologia Plantarum, 46, 151–154.

    Article  CAS  Google Scholar 

  • Gill, P. K., Sharma, A. D., Singh, P., & Bhullar, S. S. (2001). Effect of various abiotic stresses on the growth soluble sugars and water relations of sorghum seedlings grown in light and darkness. Bulgarian Journal of Plant Physiology, 27, 72–84.

    CAS  Google Scholar 

  • Gouia, H., Gorbel, M. H., & Meyer, C. (2000). Effects of cadmium on activity of nitrate reductase and on other enzymes of the nitrate assimilation pathway in bean. Plant Physiology and Biochemistry, 38, 629–638.

    Article  CAS  Google Scholar 

  • Gubbins, E. J., Batty, L. C., & Lead, J. R. (2011). Phytotoxicity of silver nano-particles to Lemna minor L. Environmental Pollution, 159, 1551–1559.

    Article  CAS  PubMed  Google Scholar 

  • Hamada, A. M., & El-Enany, A. E. (1994). Effect of NaCl salinity on growth, pigment and mineral element contents, and gas exchange of broad bean and pea plants. Biologia Plantarum, 36, 75–81.

    Article  CAS  Google Scholar 

  • Hemalatha, S., Anburaj, A., & Francis, K. (1997). Effect of heavy metals on certain biochemical constituents and nitrate reductase activity in Orzya sativa L. seedlings. Journal of Environmental Biology, 18, 313–319.

    CAS  Google Scholar 

  • Huang, G. Y., Wang, Y. S., Sun, C. C., Dong, J. D., & Sun, Z. X. (2010). The effect of multiple heavy metals on ascorbate, glutathione and related enzymes in two mangrove plant seedling (Kandeliacandel and Bruguiera gymnorrhiza). Oceanological and Hydrobiological Studies, 39, 11–25.

    Article  CAS  Google Scholar 

  • Jiang, H., Li, M., Chang, F., Li, W., & Yin, L. (2012). Physiological analysis of silver nano-particles and AgNO3 toxicity to Spirodela polyrrhiza. Environmental Toxicology and Chemistry, 31, 1880–1996.

    Article  CAS  PubMed  Google Scholar 

  • Karami Mehrian, S., Heidari, R., & Rahmani, F. (2015). Effect of silver nano-particles on free amino acids content and antioxidant defense system of tomato plants. Indian Journal of Plant Physiology, 20, 257–263.

    Article  Google Scholar 

  • Karimi, R., Solhi, S., Solhi, M., & Safe, A. (2013). Effects of Cd, Pb and Ni on growth and macronutrients in Hordeumvulgare L and Brassica napus L. International Journal of Agronomy and Plant Production, 4, 76–81.

    Google Scholar 

  • Kibria, M. G. (2008). Dynamics of cadmium and lead in some soils of Chittagong and their influx in some edible crops. Ph.D. Thesis, University of Chittagong, Bangladesh.

  • Kim, S., Choi, J. E., Choi, J., Chung, K. H., Park, K., Yi, J., et al. (2009). Oxidative stress-dependent toxicity of silver nano-particles in human hepatoma cells. Toxicology in Vitro, 23, 1076–1084.

    Article  CAS  PubMed  Google Scholar 

  • Krishnaraj, C., Jagan, E. G., Ramachandran, R., Abirami, S. M., Mohan, N., & Kalaichelvan, P. T. (2012). Effect of biologically synthesized silver nano-particles on Bacopa monnieri (Linn.) Wettst. Plant growth metabolism. Process Biochemistry, 47, 651–658.

    Article  CAS  Google Scholar 

  • Lichtenthaler, H. K., & Wellburn, A. R. (1985). Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochemical Society Transactions, 11, 591–592.

    Article  Google Scholar 

  • Masclaux, C., Quilleré, I., Gallais, A., & Hirel, B. (2001). The challenge of remobilization in plant nitrogen economy: A survey of physio-agronomic and molecular approaches. Annals of Applied Biology, 138, 69–81.

    Article  CAS  Google Scholar 

  • Mazumdar, H. (2014). The impact of silver nano-particles on plant biomass and chlorophyll content. International Journal of Engineering and Science, 4, 12–20.

    Google Scholar 

  • Miao, A. J., Schwehr, K. A., Xu, C., Zhang, S. J., Luo, Z. P., Quigg, A., et al. (2009). The algal toxicity of silver engineered nano-particles and detoxification by exopolymeric substances. Environmental Pollution, 157, 3034–3041.

    Article  CAS  PubMed  Google Scholar 

  • Michalak, A. (2006). Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environmental Studies, 15, 523–530.

    CAS  Google Scholar 

  • Mishra, A., & Choudhuri, M. A. (1999). Monitoring or phytotoxicity of lead and mercury from germination and early seedling growth induces two rice cultivars. Water, Air, and Soil Pollution, 114, 339–346.

    Article  CAS  Google Scholar 

  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410.

    Article  CAS  PubMed  Google Scholar 

  • Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N., et al. (2008). Toxicity of silver nano-particles to Chlamydomonas reinhardtii. Environmental Science and Technology, 42, 8959–8964.

    Article  CAS  PubMed  Google Scholar 

  • Omaye, S. T., Turnbull, J. D., & Sauberlich, H. E. (1979). Selected methods for the determination of ascorbic acid in animal cells, tissues and fluids. In D. B. McCormick & L. D. Wright (Eds.), Methods in enzymology (Vol. 62, pp. 3–11). New York: Academic Press.

    Google Scholar 

  • Parekh, D., Purani, K. R., & Vastava, H. S. (1990). Inhibition of chlorophyll biosynthesis by cadmium in greening maize leaf segments. Biochemie Physiologie der Pflanzen, 186, 239–242.

    Article  CAS  Google Scholar 

  • Pradhan, S., Patra, P., Mitra, S., Dey, K. K., Jain, S., Sarkar, S., et al. (2014). Manganese nanoparticles, impact on non-nodulated plant as a potent enhancer in nitrogen metabolism and toxicity study both in vivo and in vitro. Journal of Agricultural and Food Chemistry, 62, 8777–8785.

    Article  CAS  PubMed  Google Scholar 

  • Radniecki, T. S., Stankus, D. P., Neigh, A., Nason, J. A., & Semprini, L. (2011). Influence of liberated silver from silver nano-particles on nitrification inhibition of Nitrosomonas europaea. Chemosphere, 85, 43–49.

    Article  CAS  PubMed  Google Scholar 

  • Ruffini-Castiglione, M., & Cremonini, R. (2009). Nano-particles and higher plants. Caryologia, 62, 161–165.

    Article  Google Scholar 

  • Salama, H. M. H. (2012). Effects of silver nano-particles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). International Research Journal of Biotechnology, 3, 190–197.

    Google Scholar 

  • Sarita, S., Manisha, G., & Prakash, C. (1996). Bioaccumulation and biochemical effects of mercury in the plant Bacopamonnieri L. Environmental Toxicology and Water Quality, 11, 105–112.

    Article  Google Scholar 

  • Sela, M., Tel-Or, E., Fritz, E., & Huttermann, A. (1988). Localization and toxic effects of cadmium, copper, and uranium in Azolla. Plant Physiology, 88, 30–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seltenrich, N. (2013). Nanosilver, weighing the risks and benefits. Environmental Health Perspectives, 121, 220–225.

    Article  Google Scholar 

  • Sgherri, C., Cosi, E., & Navari-Izzo, F. (2003). Phenols and antioxidative status of Raphanussativus grown in copper excess. Physiologia Plantarum, 118, 21–28.

    Article  CAS  PubMed  Google Scholar 

  • Sileikaite, A., Prosycevas, I., Pulso, J., Juraitis, A., & Guobiene, A. (2006). Analysis of silver nano-particles produced by chemical reduction of silver salt solution. Materials Science, 12, 287–291.

    Google Scholar 

  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.

    CAS  Google Scholar 

  • Smirnoff, N., & Wheeler, G. L. (2000). Ascorbic acid in plants, biosynthesis and function. Critical Reviews in Plant Sciences, 19, 267–290.

    Article  CAS  Google Scholar 

  • Stampoulis, D., Sinha, S. K., & White, J. C. (2009). Assay-dependent phytotoxicity of nano-particles to plants. Environmental Science and Technology, 43, 9473–9479.

    Article  CAS  PubMed  Google Scholar 

  • Tiwari, D. K., Dasgupta-Schubert, N., Villaseñor-Cendejas, L. M., Villegas, J., Carreto-Montoya, L., & Borjas-García, S. E. (2014). Interfacing carbon nanotubes (CNT) with plants, Enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Applied Nanoscience, 4, 577–591.

    Article  CAS  Google Scholar 

  • Trivedi, S., & Erdei, L. (1992). Effects of cadmium and lead on the accumulation of Ca2+ and K+ and on the influx and translocation of K+ in wheat of low and high K+ status. Physiologia Plantarum, 84, 94–100.

    Article  CAS  Google Scholar 

  • Van, A., & Clijsters, H. (1990). Effect of metals on enzyme activity in plants. Plant, Cell and Environment, 13, 195–206.

    Article  Google Scholar 

  • Wakeel, A. (2013). Potassium–sodium interactions in soil and plant under saline-sodic conditions. Journal of Plant Nutrition and Soil Science, 176, 344–354.

    Article  CAS  Google Scholar 

  • Wang, Y., & Wu, W. H. (2010). Plant sensing and signaling in response to K+ deficiency. Molecular Plant, 3, 280–287.

    Article  CAS  PubMed  Google Scholar 

  • White, P. J., & Broadley, M. R. (2001). Chloride in soils and its uptake and movement within the plant: A review. Annals of Botany (London), 88, 967–988.

    Article  CAS  Google Scholar 

  • Winkle-Shirley, B. (2002). Biosynthesis of flavonoids and effects of stress. Current Opinion in Plant Biology, 5, 218–223.

    Article  Google Scholar 

  • Yasur, J., & Rani, P. (2013). Environmental effects of nanosilver, impact on castor seed germination, seedling growth, and plant physiology. Environmental Science and Pollution Research,. doi:10.1007/s11356-013-1798-3.

    PubMed  Google Scholar 

  • Yin, L., Cheng, Y., Espinasse, B., Colman, P. B., Auffan, M., Wiesner, M., et al. (2011). More than the ions, the effects of silver nano-particles on Loliummultiflorum. Environmental Science and Technology, 45, 2360–2362.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y. (2013). Ascorbic acid in plants. Springer briefs in plant science. New York: Springer. doi:10.1007/978-1-4614-4127-4_2.

    Book  Google Scholar 

  • Zhao, L., Peralta-Videa, J. R., Rico, C. M., Hernandez-Viezcas, J. A., Sun, Y., Niu, G., et al. (2014). CeO2 and ZnO nano-particles change the nutritional qualities of cucumber (Cucumis sativus). Journal of Agricultural and Food Chemistry, 62, 2752–2759.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Professors, R. De Lima, R. Heidari and K.H. Farhadi, Drs. F. Rahmani, M. Forough, R. Molaei and Mrs. S.H. Shiatey for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Karami Mehrian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karami Mehrian, S., Karimi, N. Biological testing of the chemically synthesized silver nano-particles for nitrate, chloride, potassium and sodium contents, and some physiological and biochemical characteristics of tomato plants. Ind J Plant Physiol. 22, 48–55 (2017). https://doi.org/10.1007/s40502-016-0250-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-016-0250-3

Keywords

Navigation