Skip to main content
Log in

Identification and expression analysis of six salt inducible Arabidopsis ortholog genes in chickpea

  • Short Communication
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Salinity is a major abiotic stress that negatively affect plant growth, survival and productivity. In the present study we have identified six putative salt inducible Arabidopsis ortholog genes from chickpea genome belonging to different functional categories as per gene ontology classification. Salt responsive expression of genes was validated by semiquantitative RT-PCR which revealed their possible role in salt stress response. Comparison of promoter regions of these six genes of chickpea with promoter region of 44 putative salt responsive genes of Arabidopsis revealed three conserved motifs of different lengths specific to chickpea genes. The genes identified in this study may serve as promising candidates in studies of salt tolerance mechanisms of chickpea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agarwal, P. K., Shukla, P. S., Gupta, K., & Jha, B. (2013). Bioengineering for salinity tolerance in plants: state of the art. Molecular Biotechnology, 54, 102–123.

    Article  CAS  PubMed  Google Scholar 

  • Ali, Z., Zhang, D. Y., Xu, Z. L., Xu, L., Yi, J. X., & He X. L., et al. (2012). Uncovering the salt response of Soybean by unraveling its wild and cultivated functional genomes using tag sequencing. PLoS ONE, 7(11), e48819. doi:10.1371/journal.pone.0048819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf, M., & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166, 3–16.

    Article  CAS  Google Scholar 

  • Bailey, T. L., Williams, N., Misleh, C., & Li, W. W. (2006). MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Research, 34, W369–W373. (Web Server issue).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabian, A., Buske, M. B., Denis, C. B., & Timothy, L. B. (2010). Assigning roles to DNA regulatory motifs using comparative genomics. Bioinformatics, 26(7), 860–866.

    Article  Google Scholar 

  • Garg, R., Shankar, R., Thakkar, B., Kudappa, B., Krishnamurthy, L., Mantri, N., et al. (2016). Transcriptome analyses reveal genotype- and developmental stagespecific molecular responses to drought and salinity stresses in chickpea. Scientific Reports, 6, 19228. doi:10.1038/srep19228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, Y., & Deyholos, M. K. (2006). Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biology, 6, 25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Long, W., Zou, X., & Zhang, X. (2015). Transcriptome analysis of Canola (Brassica napus) under Salt Stress at the Germination Stage. PLoS One, 10(2), e0116217. doi:10.1371/journal.pone.0116217.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maa, Y., Qina, F., & Tran, L. P. (2012). Research Highlight Contribution of Genomics to Gene Discovery in Plant Abiotic Stress Responses. Molecular Plant, 5, 1176–1178.

    Article  Google Scholar 

  • Marone, M., Mozzetti, S., De Ritis, D., Pierelli, L., & Scambia, G. (2001). Semiquantitative RT-PCR analysis to assess the expression levels of multiple transcripts from the same sample. Biol Proced Online, 3, 19–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina, C., Zaman-Allah, M., Khan, F., Fatnassi, N., Horres, R., Rotter, B., et al. (2011). The salt-responsive transcriptome of chickpea roots and nodules via deep SuperSAGE. BMC Plant Biology, 11, 31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nimmy, M. S., Kumar, V., Singh, A. K., Jain, P. K., & Srinivasan, R. (2015). Expression analysis of a MATE-type transporter gene of Arabidopsis and its orthologues in rice and chickpea under salt stress. Indian Journal of Genetics and plant breeding, 75(4), 478–485. doi:10.5958/0975-6906.2015.00076.0.

    Article  CAS  Google Scholar 

  • Seki, M., Narusaka, M., & Ishida, J. (2002). Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high salinity stresses using a full-length cDNA microarray. Plant Journal, 31, 279–292.

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki, K., Yamaguchi-Shinozaki, K., & Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology, 6, 410–417.

    Article  CAS  PubMed  Google Scholar 

  • Xian, L., Sun, P., Hu, S., Wu, J., & Liu, J. H. (2014). Molecular cloning and characterization of CrNCED1, a gene encoding 9-cis-epoxycarotenoid dioxygenase in Citrus reshni with functions in tolerance to multiple abiotic stresses. Planta, 239, 61–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

N. M. S. thanks CSIR and ICAR and V. K thanks the University Grants Commission for the UGC Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Nimmy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nimmy, M.S., Kumar, V. Identification and expression analysis of six salt inducible Arabidopsis ortholog genes in chickpea. Ind J Plant Physiol. 21, 362–365 (2016). https://doi.org/10.1007/s40502-016-0231-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-016-0231-6

Keywords

Navigation