Skip to main content
Log in

Paclobutrazol induced changes in carbohydrates and some associated enzymes during floral initiation in mango (Mangifera indica L.) cv. Totapuri

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

In order to study the role of carbohydrates in the paclobutrazol induced floral initiation in mango (Mangifera indica L.), the carbohydrate contents and the activities of amylase and sucrose metabolizing enzymes were analyzed in the apical buds and leaves of growing shoots at 4 bud developmental stages numerically characterized as 510 (initiation of bud swelling), 511 (swollen buds), 513 (bud burst) and 515 (panicle emergence) according to standard BBCH scale. The soil drenching treatment of paclobutrazol @ 3.0 ml m−1 canopy diameter to the mango cv. Totapuri resulted in increase in the contents of total soluble sugars, reducing sugars, starch, sucrose, glucose and fructose in the apical buds and leaves, and the increases were greater in apical buds. Both in the paclobutrazol treated and control trees, the contents of total soluble sugar, reducing sugar, sucrose, glucose and fructose showed a progressive increase from 510 to 513 bud developmental stages and declined subsequently. In contrast, leaf starch showed a consistent declining pattern from higher value at 510–515 bud developmental stages. The amylase activity in leaves declined, while the activities of acid invertase (AI), sucrose synthase (SS) and sucrose phosphate synthase (SPS) increased significantly in the apical buds of paclobutrazol treated trees as compared to control, with peak activity witnessed at 513 bud developmental stage. The results indicated that paclobutrazol induced flowering is accompanied by an increase in starch in leaf concomitant with an increase in soluble sugars like sucrose, glucose and fructose in apical buds and inhibition in the amylase activity in association with increase in the activities of AI, SPS and SS in the apical buds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel Rahim, A. O. S., Elamin, O. M., & Bangerth, F. K. (2011). Effects of paclobutrazol (PBZ) on floral induction and associated hormonal and metabolic changes of biennially bearing mango (Mangifera indica L.) cultivars during off year. ARPN Journal Agricultural and Biological Science, 6, 55–67.

    Google Scholar 

  • Corbesier, L., Lejeune, P., & Bernier, G. (1998). The role of carbohydrates in the induction of flowering in Arabidopsis thaliana: comparison between the wild type and a starchless mutant. Planta, 206, 131–137.

    Article  CAS  PubMed  Google Scholar 

  • Dalziel, J., & Lawrence, D. K. (1984). Biochemical and biological effects of kaurene oxidase inhibitors such as paclobutrazol. In R. Menhennet & D. K. Lawrence (Eds.), Biochemical aspects of synthetic and naturally occurring plant growth regulators. Monograph 11 (pp. 43–57). Wantage: British Plant Growth Regulator Group.

    Google Scholar 

  • Das, K. K., Sarkar, R. K., & Ismail, A. M. (2005). Elongation ability and non-structural carbohydrate levels in relation to submergence tolerance in rice. Plant Science, 168, 131–136.

    Article  CAS  Google Scholar 

  • Davenport, T. L. (2007). Reproductive physiology of mango. Brazilian Journal of Plant Physiology, 19, 363–376.

    Article  CAS  Google Scholar 

  • Davenport, T. L. (2009). Reproductive physiology. In R. E. Litz (Ed.), The mango: Botany, production and uses (2nd ed., pp. 97–169). Wallingford: CAB International.

    Chapter  Google Scholar 

  • Davenport, T. L., Ying, Z., Kulkarni, V., & White, T. L. (2006). Evidence for a translocatable florigenic promoter in mango. Scientia Horticulturae, 110, 150–159.

    Article  CAS  Google Scholar 

  • Hansel, J., & Moller, I. (1975). Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Analytical Biochemistry, 68, 87–94.

    Article  Google Scholar 

  • Hedge, J. E., Hofreiter, B. T. (1962). Methods in carbohydrate chemistry. In: R. L. Whistler, J. N. Be Miller (Ed), Vol. 17, Academic Press, New York, pp 420.

  • Huang, W. D., Shen, T., Han, Z., & Liu, S. (1995). Influence of paclobutrazol on photosynthesis rate and dry matter partitioning in the apple trees. Journal of Plant Nutrition, 18, 901–910.

    Article  CAS  Google Scholar 

  • Hubbard, N. L., Huber, S. C., & Pharr, D. M. (1989). Sucrose phosphate synthase and acid invertase as determinants of sucrose concentration in developing muskmelon (Cucumis melo L.) fruits. Plant Physiology, 91, 1527–1534.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ito, A., Hayama, H., & Kashimura, Y. (2002). Sugar metabolism in buds during flower bud formation: a comparison of two Japanese pear [Pyrus pyrifolia (Burm.) Nak.] cultivars possessing different flowering habits. Scientia Horticulturae, 96, 163–175.

    Article  CAS  Google Scholar 

  • Jacobsen, J. V., & Chandler, P. M. (1987). Gibberellin and abscisic acid in germinating cereals. In P. J. Davies (Ed.), Plant hormones and their role in plant growth and development (pp. 164–193). Boston: Martinus Nijhoff Publishers.

    Chapter  Google Scholar 

  • Koch, K. (2004). Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology, 7, 235–246.

    Article  CAS  PubMed  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  PubMed  Google Scholar 

  • Maurel, K., Leite, G. B., Bonhomme, M., Guilliot, A., Regeau, R., Petel, G., et al. (2004). Trophic control of bud break in peach (Prunus persica) trees: a possible role of hexoses. Tree Physiology, 24, 579–588.

    Article  CAS  PubMed  Google Scholar 

  • McCamant, T. (1988). Utilization and transport of storage carbohydrates in sweet cherry. MS Thesis. Washington State University, Pullman.

  • Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  • Monerri, C., Fortunato-Almeida, A., Molina, R. V., Nebauer, S. G., & Garcia-Luis, A. (2011). Relation of carbohydrate reserves with the forthcoming crop, flower formation and photosynthetic rate, in the alternate bearing ‘Salustiana’ sweet orange (Citrus sinensis L.). Scientia Horticulturae, 129, 71–78.

    Article  CAS  Google Scholar 

  • Murti, G. S. R., & Upreti, K. K. (2000). Plant hormones. In A. Hemantaranjan (Ed.), Advances in plant physiology (Vol. 3, pp. 109–148). Jodhpur: Scientific Publishers.

    Google Scholar 

  • Nunez-Elisea, R., & Davenport, T. L. (1991). Requirement for mature leaves during floral induction and floral transition in developing shoots of mango. Acta Horticulturae, 296, 33–37.

    Google Scholar 

  • Nunez-Elisea, R., & Davenport, T. L. (1995). Effect of leaf age, duration of cool temperature treatment, and photoperiod on bud dormancy release and floral initiation in mango. Scientia Horticulturae, 62, 63–73.

    Article  Google Scholar 

  • Rademacher, W. (2000). Growth retardants: Effects on gibberellin biosynthesis and other metabolic pathways. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 501–531.

    Article  CAS  PubMed  Google Scholar 

  • Rajan, S., Tiwari, D., Singh, V. K., Saxena, P., Singh, S., Reddy, Y. T. N., et al. (2011). Application of extended BBCH scale for phenological studies in mango (Mangifera indica L.). Journal of Applied Horticulture, 13, 108–114.

    Google Scholar 

  • Ramirez, F., & Davenport, T. L. (2010). Mango (Mangifera indica L.) flowering physiology. Scientia Horticulturae, 126, 65–72.

    Article  CAS  Google Scholar 

  • Sachs, R. M., & Hackett, W. P. (1983). Source-sink relationships and flowering. In W. J. Meudt (Ed.), Strategies of plant reproduction (pp. 263–272). Ottawa: Allanheld Osmun.

    Google Scholar 

  • Sanchez-Mata, M. C., Camara-Hurtado, M., & Diez-Marques, C. (2002). Identification and quantification of soluble sugars in green beans by HPLC. European Food Research and Technology, 214, 254–258.

    Article  CAS  Google Scholar 

  • Singh, V. K., & Singh, A. (2003). Effect of paclobutrazol on regularity of bearing in mango (Mangifera indica L.). Physiology Molecular Biology Plants, 9, 239–248.

    Google Scholar 

  • Somogyi, M. (1952). Notes on sugar estimation. Journal of Biological Chemistry, 200, 245.

    Google Scholar 

  • Suthumchai, W., Matsui, Y., Kawada, K., Kosugi, Y., & Fujimura, K. (2007). Seasonal fluctuations of sucrose metabolizing enzymes activities and sugar contents in lettuce (Lactuca sativa L.). Journal of Biological Sciences, 7, 752–758.

    Article  CAS  Google Scholar 

  • Swamy, J. S. (2012). Flowering manipulation in mango: A science comes of age. Journal Today’s Biological Sciences: Research and Review, 1, 122–137.

    Google Scholar 

  • Upreti, K. K., Reddy, Y. T. N., Shivu Prasad, S. R., Bindu, G. V., & Jayaram, H. L. (2013). Hormonal changes in response to paclobutrazol induced early flowering in mango cv Totapuri. Scientia Horticulturae, 150, 414–418.

    Article  CAS  Google Scholar 

  • van Handel, E. (1968). Direct micro determination of sucrose. Analytical Biochemistry, 22, 280–283.

    Article  PubMed  Google Scholar 

  • Walker, A. J., Ho, L. C., & Baker, D. A. (1978). Carbon translocation in other plant tissues: Pathways of carbon metabolism in the fruit. Planta, 189, 329–339.

    Google Scholar 

  • Wieland, W. F., & Wample, R. L. (1985). Effects of paclobutrazol on growth, photosynthesis and carbohydrate content of ‘Delicious’ apples. Scientia Horticulturae, 26, 139–147.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director of Institute for providing facilities. We gratefully acknowledge the financial support from NAIP, ICAR New Delhi. The authors also acknowledge the technical support of Mr. H.L. Jayaram, Mr. T.N. Nagaraju and Mr. H.S. Naveen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Upreti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upreti, K.K., Shivu Prasad, S.R., Reddy, Y.T.N. et al. Paclobutrazol induced changes in carbohydrates and some associated enzymes during floral initiation in mango (Mangifera indica L.) cv. Totapuri. Ind J Plant Physiol. 19, 317–323 (2014). https://doi.org/10.1007/s40502-014-0113-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-014-0113-8

Keywords

Navigation