Skip to main content
Log in

Biochemical changes in potato under elevated temperature

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The present experiment was conducted with two popular potato (Solanum tuberosum L.) cultivars of north-east India namely ‘Kufri jyoti’ and ‘Kufri megha’ with the objective to study the biochemical changes in response to high temperature. Parameters such as total chlorophyll, chlorophyll a/b ratio, proline content, total amino acid content, total soluble sugar content, lipid peroxidation and total superoxide dismutase activity were studied during the growth of the potato crop. The study revealed that high temperature has a significant impact on these parameters. The treatment × variety interaction was found to be significant (p ≤ 0.01) for proline content, total soluble sugar content and superoxide dismutase activity at most of the growth stages, and can be taken as marker traits for selection of heat resistant potato varieties. Variety Kufri jyoti was found to be more sensitive to high temperature leading to significant reduction in crop yield compared to Kufri megha.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed, A., Rajeev, N. B., Sangeeta, K., & Madan, P. S. (2011). Higher gylcine betaine and antioxidant enzymes activity are associated with high temperature tolerance in potato. Indian Journal of Plant Physiology, 16, 285–293.

    Google Scholar 

  • Almeselmani, M., Deshmukh, P. S., Sairam, R. K., Khushwaha, S. R., & Singh, T. P. (2006). Protective role of antioxidant enzymes under high temperature stress. Plant Science, 171, 382–388.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, J. M., & Boardman, N. K. (1964). Studies on the greening of dark grown bean plants. II Development of photochemical activity. Biological Sciences, 17, 93–101.

    Google Scholar 

  • Asada, K. (1997). The role of ascorbate peroxidase and monodehydroascorbate reductase in H2O2 scavenging in plants. In J. G. Scandalios (Ed.), Oxidative Stress and the Molecular Biology of Antioxidant Defenses (pp. 715–735). New York: CSHL Press.

    Google Scholar 

  • Bates, H. D., Waldren, R. P., & Teare, E. D. (1973). Rapid determination of free proline in water stress studies. Plant Soil, 39, 205–208.

    Article  CAS  Google Scholar 

  • Buege, J. A., & Aust, S. D. (1978). Microtonal lipid peroxidation. Methods in Enzymology, 52, 302–310.

    Article  CAS  PubMed  Google Scholar 

  • Chaitanya, K., Sundar, D., Masilamani, S., & Ramachandra, R. A. (2002). Variation in stress- induced antioxidant enzyme activities among three mulberry cultivars. Plant Growth Regulation, 36, 175–180.

    Article  CAS  Google Scholar 

  • Covey-Crump, E. M. (2002). Regulation of root respiration in two species of Plantago that differ in relative growth rate: The effect of short- and long-term changes in temperature. Plant Cell Environment, 25, 1501–1513.

    Article  Google Scholar 

  • Dekov, I. T., Tsonev, T., & Yordanov, I. (2000). Effects of water stress and high temperature stress on the structure and activity of photosynthetic apparatus of Zea mays and Helianthus annuus. Photosynthetica, 38, 361–366.

    Article  Google Scholar 

  • Dhindsa, R. S., Dhindsa, P., & Thorpe, T. A. (1981). Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32, 93–101.

    Article  CAS  Google Scholar 

  • Hijmans, R. J. (2003). The effect of climate change on global potato production. American Journal of Potato Research, 80, 271–279.

    Article  Google Scholar 

  • Howarth, C. J. (2005). Genetic improvements of tolerance to high temperature. In M. Ashraf & P. J. C. Harris (Eds.), Abiotic stresses—plant vresistance through breeding and molecular approaches (pp. 277–300). New York: The Haworth Press.

    Google Scholar 

  • IPCC (Intergovernmental Panel On Climate Change). (2007). Climate change and its impacts in the near and long term under different scenarios. In The Core Writing Team, R. K. Pachauri, & A. Reisinger (Eds.), Climate change impact of high-temperature stress on rice: Synthesis report (pp. 43–54). Geneva: IPCC.

    Google Scholar 

  • Lafta, A. M., & Lorenzen, J. H. (1995). Effect of high temperature on plant growth and carbohydrate metabolism in potato. Plant Physiology, 109, 637–643.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lugan, R., Niogret, M. F., Leport, L., Guegan, J. P., Larher, F. R., Savoure, A., et al. (2010). Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte. Plant Journal, 64, 215–229.

    Article  CAS  PubMed  Google Scholar 

  • Moore, S., & Stein, W. H. (1948). Polyphenol oxidase. In S. P. Colowick & N. D. Kaplan (Eds.), Methods in enzymol (Vol. 3, p. 468). New York: Academic Press.

    Google Scholar 

  • Rui, R. L., Nie, Y. Q., & Tong, H. Y. (1990). SOD activity as a parameter for screening stress tolerant germplasm resources in sweet potato. (Ipomoea batatus L.) Jiangsu. Journal of Agricultural Science, 6, 52–56.

    Google Scholar 

  • Sadasivam, S., & Manikam, A. (1992). Biochemical methods. New Delhi: Wiley Eastern Limited.

    Google Scholar 

  • Sairam, R. K., Srivastava, G. C., & Saxena, D. C. (2000). Increased antioxidant activity under elevated temperatures: A mechanism of heat stress tolerance in wheat genotypes. Biology of Planta, 43, 245–251.

    Article  CAS  Google Scholar 

  • Sakamotto, A., & Muratta, N. (2002). The role of glycine betaine in protection of plants against stress: Clue from transgenic plants. Plant Cell Environment, 25, 163–171.

    Article  Google Scholar 

  • Saue, T., & Kadaja, J. (2011). Possible effects of climate change on potato crops in Estonia. Boreal Environment Research, 16, 203–217.

    Google Scholar 

  • Savchenko, G. E., Klyuchareva, E. A., Abrabchik, L. M., & Serdyuchenko, E. V. (2002). Effect of periodic heat shock on the membrane system of etioplasts. Russian Journal of Plant Physiology, 49, 349–359.

    Article  CAS  Google Scholar 

  • Singh, J. P., Govindakrishnan, P. M., Lal, S. S., & Aggarwal, P. K. (2005). Increasing the efficiency of agronomy experiments in potato using INFOCROP-POTATO model. Potato Research, 48, 131–152.

    Article  Google Scholar 

  • Szabados, L., & Savoure, A. (2010). Proline: A multifunctional amino acid. Trends Plant Science, 15, 89–97.

    Article  CAS  Google Scholar 

  • Verbruggen, N., & Hermans, C. (2008). Proline accumulation in plants: A review. Amino Acids, 35, 753–759.

    Article  CAS  PubMed  Google Scholar 

  • Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61, 199–223.

    Article  Google Scholar 

  • Wolf, S., Marani, A., & Rudich, J. (1990). Effects of temperature and photoperiod on assimilate partitioning in potato plants. Annals of Botany, 66, 513–520.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirmali Gogoi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, S., Gogoi, N., Sarma, B. et al. Biochemical changes in potato under elevated temperature. Ind J Plant Physiol. 19, 36–42 (2014). https://doi.org/10.1007/s40502-014-0066-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-014-0066-y

Keywords

Navigation