Skip to main content

Advertisement

Log in

Clinical Perspective of Electrospun Nanofibers as a Drug Delivery Strategy for Regenerative Endodontics

  • Dental Restorative Materials (M Özcan, Section Editor)
  • Published:
Current Oral Health Reports Aims and scope Submit manuscript

Abstract

Recent progress in endodontics, particularly encouraging regenerative outcomes achieved by evoked bleeding therapy in the treatment of necrotic immature permanent teeth, clearly suggests that establishment of a regenerative-based clinical strategy is closer than ever before. In this context, an efficient disinfection of the root canal system, mainly through the eradication of microbial biofilms, is a crucial step. Accordingly, numerous bacterial biofilm models have been used in vitro as an attempt to simulate the clinical conditions. To offer a comprehensive update on progress in the field, this review provides an overview of biofilm role in endodontic disease and in vitro biofilm models, the importance of disinfection, a brief review on antibiotic-containing polymer nanofibers and their antimicrobial properties, and future perspective of this novel intracanal drug delivery strategy in regenerative endodontics. Limitations in reproducing in vivo conditions will always exist; however, creating a laboratory-based biofilm model that very closely simulates clinical situations makes in vitro research reliable and the first step towards translation of new therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Albuquerque MT, Valera MC, Nakashima M, Nör JE, Bottino MC. Tissue-engineering-based strategies for regenerative endodontics. J Dent Res. 2014;93:1222–31. This manuscript presents an extensive table on the latest discoveries related to the use of scaffolds and/or stem cells in regenerative endodontics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Galler KM. Clinical procedures for revitalization: current knowledge and considerations. Int Endod J. 2015. doi:10.1111/iej.12606.

    PubMed  Google Scholar 

  3. American Association of Endodontics. 2016. http://www.aae.org. Accessed 2 May 2016.

  4. Huang GT. Dental pulp and dentin tissue engineering and regeneration: advancement and challenge. Front Biosci (Elite Ed). 2011;3:788–800.

    Article  Google Scholar 

  5. Diogenes AR, Ruparel NB, Teixeira FB, Hargreaves KM. Translational science in disinfection for regenerative endodontics. J Endod. 2014;40:S52–7. This review paper highlights the impact of irrigants and medicaments in regenerative endodontics.

    Article  PubMed  Google Scholar 

  6. Cvek M. Treatment of non-vital permanent incisors with calcium hydroxide. I. Follow-up of periapical repair and apical closure of immature roots. Odontol Revy. 1972;23:27–44.

    CAS  PubMed  Google Scholar 

  7. Cvek M, Sundstrom B. Treatment of non-vital permanent incisors with calcium hydroxide. V. Histologic appearance of roentgenographically demonstrable apical closure of immature roots. Odontol Revy. 1974;25:379–91.

    CAS  PubMed  Google Scholar 

  8. Damle SG, Bhattal H, Loomba A. Apexification of anterior teeth: a comparative evaluation of mineral trioxide aggregate and calcium hydroxide paste. J Clin Pediatr Dent. 2012;36:263–8.

    Article  CAS  PubMed  Google Scholar 

  9. Jeeruphan T, Jantarat J, Yanpiset K, Suwannapan L, Khewsawai P, Hargreaves KM. Mahidol study 1: comparison of radiographic and survival outcomes of immature teeth treated with either regenerative endodontic or apexification methods: a retrospective study. J Endod. 2012;38:1330–6.

    Article  PubMed  Google Scholar 

  10. Wang X, Thibodeau B, Trope M, Lin LM, Huang GT. Histologic characterization of regenerated tissues in canal space after the revitalization/revascularization procedure of immature dog teeth with apical periodontitis. J Endod. 2010;36:56–63.

    Article  PubMed  Google Scholar 

  11. Andreasen JO, Farik B, Munksgaard EC. Long-term calcium hydroxide as a root canal dressing may increase risk of root fracture. Dent Traumatol. 2002;18:134–7.

    Article  CAS  PubMed  Google Scholar 

  12. Cvek M. Prognosis of luxated non-vital maxillary incisors treated with calcium hydroxide and filled with gutta-percha. A retrospective clinical study. Endod Dent Traumatol. 1992;8:45–55.

    Article  CAS  PubMed  Google Scholar 

  13. Banchs F, Trope M. Revascularization of immature permanent teeth with apical periodontitis: new treatment protocol? J Endod. 2004;30:196–200.

    Article  PubMed  Google Scholar 

  14. Bose R, Nummikoski P, Hargreaves K. A retrospective evaluation of radiographic outcomes in immature teeth with necrotic root canal systems treated with regenerative endodontic procedures. J Endod. 2009;35:1343–9.

    Article  PubMed  Google Scholar 

  15. Cehreli ZC, Isbitiren B, Sara S, Erbas G. Regenerative endodontic treatment (revascularization) of immature necrotic molars medicated with calcium hydroxide: a case series. J Endod. 2011;37:1327–30.

    Article  PubMed  Google Scholar 

  16. Iwaya SI, Ikawa M, Kubota M. Revascularization of an immature permanent tooth with apical periodontitis and sinus tract. Dent Traumatol. 2001;17:185–7.

    Article  CAS  PubMed  Google Scholar 

  17. Petrino JA, Boda KK, Shambarger S, Bowles WR, McClanahan SB. Challenges in regenerative endodontics: a case series. J Endod. 2010;36:536–41.

    Article  PubMed  Google Scholar 

  18. Nakashima M, Iohara K. Mobilized dental pulp stem cells for pulp regeneration: initiation of clinical trial. J Endod. 2014;40:S26–32.

    Article  PubMed  Google Scholar 

  19. Wang W, Dang M, Zhang Z, Hu J, Eyster TW, Ni L, et al. Dentin regeneration by stem cells of apical papilla on injectable nanofibrous microspheres and stimulated by controlled BMP-2 release. Acta Biomater. 2016;36:63–72.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Z, Nör F, Oh M, Cucco C, Shi S, Nör JE. Wnt/beta-catenin signaling determines the vasculogenic fate of post-natal mesenchymal stem cells. Stem Cells. 2016. doi:10.1002/stem.2334.

    Google Scholar 

  21. Santiago CN, Pinto SS, Sassone LM, Hirata Jr R, Fidel SR. Revascularization technique for the treatment of external inflammatory root resorption: a report of 3 cases. J Endod. 2015;41:1560–4.

    Article  PubMed  Google Scholar 

  22. Soares Ade J, Lins FF, Nagata JY, Gomes BP, Zaia AA, Ferraz CC, et al. Pulp revascularization after root canal decontamination with calcium hydroxide and 2% chlorhexidine gel. J Endod. 2013;39:417–20.

    Article  PubMed  Google Scholar 

  23. Lovelace TW, Henry MA, Hargreaves KM, Diogenes A. Evaluation of the delivery of mesenchymal stem cells into the root canal space of necrotic immature teeth after clinical regenerative endodontic procedure. J Endod. 2011;37:133–8.

    Article  PubMed  Google Scholar 

  24. Diogenes A, Henry MA, Teixeira FB, Hargreaves KM. An update on clinical regenerative endodontics. Endod Top. 2013;28:2–23.

    Article  Google Scholar 

  25. Galler KM, D’Souza RN, Federlin M, Cavender AC, Hartgerink JD, Hecker S, et al. Dentin conditioning codetermines cell fate in regenerative endodontics. J Endod. 2011;37:1536–41.

    Article  PubMed  Google Scholar 

  26. Martin DE, De Almeida JF, Henry MA, Khaing ZZ, Schmidt CE, Teixeira FB, et al. Concentration-dependent effect of sodium hypochlorite on stem cells of apical papilla survival and differentiation. J Endod. 2014;40:51–5. This manuscript indicates that dentin conditioning with high NaOCl concentrations has a profound negative effect on the survival and differentiation of stem cells from the apical papilla.

    Article  PubMed  Google Scholar 

  27. Ruparel NB, de Almeida JF, Henry MA, Diogenes A. Characterization of a stem cell of apical papilla cell line: effect of passage on cellular phenotype. J Endod. 2013;39:357–63.

    Article  PubMed  Google Scholar 

  28. Bottino MC, Kamocki K, Yassen GH, Platt JA, Vail MM, Ehrlich Y, et al. Bioactive nanofibrous scaffolds for regenerative endodontics. J Dent Res. 2013;92:963–9. This study suggests that polymer-based antibiotic-containing nanofibers could function as a cell-friendly antimicrobial drug delivery system for regenerative endodontics.

    Article  CAS  PubMed  Google Scholar 

  29. Porter ML, Munchow EA, Albuquerque MT, Spolnik KJ, Hara AT, Bottino MC. Effects of novel 3-dimensional antibiotic-containing electrospun scaffolds on dentin discoloration. J Endod. 2016;42:106–12. This study indicates that electrospinning can be used to obtain 3D tubular drug delivery constructs for regenerative endodontics.

    Article  PubMed  Google Scholar 

  30. Albuquerque MT, Evans JD, Gregory RL, Valera MC, Bottino MC. Antibacterial TAP-mimic electrospun polymer scaffold: effects on P. gingivalis-infected dentin biofilm. Clin Oral Investig. 2016;20:387–93.

    Article  PubMed  Google Scholar 

  31. Albuquerque MT, Ryan SJ, Munchow EA, Kamocka MM, Gregory RL, Valera MC, et al. Antimicrobial effects of novel triple antibiotic paste-mimic scaffolds on Actinomyces naeslundii biofilm. J Endod. 2015;41:1337–43. This study was the first to synthesize triple-antibiotic containing nanofibers and demonstrate its antimicrobial efficacy using CLSM.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Albuquerque MT, Valera MC, Moreira CS, Bresciani E, de Melo RM, Bottino MC. Effects of ciprofloxacin-containing scaffolds on enterococcus faecalis biofilms. J Endod. 2015;41:710–4.

    Article  PubMed  Google Scholar 

  33. Kamocki K, Nör JE, Bottino MC. Effects of ciprofloxacin-containing antimicrobial scaffolds on dental pulp stem cell viability-In vitro studies. Arch Oral Biol. 2015;60:1131–7.

    Article  CAS  PubMed  Google Scholar 

  34. Kamocki K, Nör JE, Bottino MC. Dental pulp stem cell responses to novel antibiotic-containing scaffolds for regenerative endodontics. Int Endod J. 2015;48:1147–56.

    Article  CAS  PubMed  Google Scholar 

  35. Palasuk J, Kamocki K, Hippenmeyer L, Platt JA, Spolnik KJ, Gregory RL, et al. Bimix antimicrobial scaffolds for regenerative endodontics. J Endod. 2014;40:1879–84.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bottino MC, Yassen GH, Platt JA, Labban N, Windsor LJ, Spolnik KJ, et al. A novel three-dimensional scaffold for regenerative endodontics: materials and biological characterizations. J Tissue Eng Regen Med. 2015;9:E116–23. This study was the first to show feasibility to generate 3D tubular constructs for regenerative endodontics.

    Article  CAS  PubMed  Google Scholar 

  37. Martinho FC, Gomes BP. Quantification of endotoxins and cultivable bacteria in root canal infection before and after chemomechanical preparation with 2.5% sodium hypochlorite. J Endod. 2008;34:268–72.

    Article  PubMed  Google Scholar 

  38. Gomes BP, Endo MS, Martinho FC. Comparison of endotoxin levels found in primary and secondary endodontic infections. J Endod. 2012;38:1082–6.

    Article  PubMed  Google Scholar 

  39. Chavez de Paz LE. Redefining the persistent infection in root canals: possible role of biofilm communities. J Endod. 2007;33:652–62.

    Article  PubMed  Google Scholar 

  40. Huang R, Li M, Gregory RL. Bacterial interactions in dental biofilm. Virulence. 2011;2:435–44.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fouad AF. The microbial challenge to pulp regeneration. Adv Dent Res. 2011;23:285–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Meire MA, Coenye T, Nelis HJ, De Moor RJ. Evaluation of Nd:YAG and Er:YAG irradiation, antibacterial photodynamic therapy and sodium hypochlorite treatment on Enterococcus faecalis biofilms. Int Endod J. 2012;45:482–91.

    Article  CAS  PubMed  Google Scholar 

  43. Sun J, Song X. Assessment of antimicrobial susceptibility of Enterococcus faecalis isolated from chronic periodontitis in biofilm versus planktonic phase. J Periodontol. 2011;82:626–31.

    Article  PubMed  Google Scholar 

  44. Nagata JY, Soares AJ, Souza-Filho FJ, Zaia AA, Ferraz CC, Almeida JF, et al. Microbial evaluation of traumatized teeth treated with triple antibiotic paste or calcium hydroxide with 2% chlorhexidine gel in pulp revascularization. J Endod. 2014;40:778–83.

    Article  PubMed  Google Scholar 

  45. Shrestha A, Kishen A. Antibiofilm efficacy of photosensitizer-functionalized bioactive nanoparticles on multispecies biofilm. J Endod. 2014;40:1604–10.

    Article  PubMed  Google Scholar 

  46. Stojicic S, Shen Y, Haapasalo M. Effect of the source of biofilm bacteria, level of biofilm maturation, and type of disinfecting agent on the susceptibility of biofilm bacteria to antibacterial agents. J Endod. 2013;39:473–7.

    Article  PubMed  Google Scholar 

  47. Wang Z, Shen Y, Haapasalo M. Effectiveness of endodontic disinfecting solutions against young and old Enterococcus faecalis biofilms in dentin canals. J Endod. 2012;38:1376–9.

    Article  CAS  PubMed  Google Scholar 

  48. Wu D, Fan W, Kishen A, Gutmann JL, Fan B. Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm. J Endod. 2014;40:285–90.

    Article  PubMed  Google Scholar 

  49. Guerreiro-Tanomaru JM, de Faria-Junior NB, Duarte MA, Ordinola-Zapata R, Graeff MS, Tanomaru-Filho M. Comparative analysis of Enterococcus faecalis biofilm formation on different substrates. J Endod. 2013;39:346–50.

    Article  PubMed  Google Scholar 

  50. Du T, Shi Q, Shen Y, Cao Y, Ma J, Lu X, et al. Effect of modified nonequilibrium plasma with chlorhexidine digluconate against endodontic biofilms in vitro. J Endod. 2013;39:1438–43.

    Article  PubMed  Google Scholar 

  51. Spratt DA, Pratten J, Wilson M, Gulabivala K. An in vitro evaluation of the antimicrobial efficacy of irrigants on biofilms of root canal isolates. Int Endod J. 2001;34:300–7.

    Article  CAS  PubMed  Google Scholar 

  52. Hiraishi N, Yiu CK, King NM, Tagami J, Tay FR. Antimicrobial efficacy of 3.8% silver diamine fluoride and its effect on root dentin. J Endod. 2010;36:1026–9.

    Article  PubMed  Google Scholar 

  53. Niazi SA, Clark D, Do T, Gilbert SC, Foschi F, Mannocci F, et al. The effectiveness of enzymic irrigation in removing a nutrient-stressed endodontic multispecies biofilm. Int Endod J. 2014;47:756–68.

    Article  CAS  PubMed  Google Scholar 

  54. Bertassoni LE, Stankoska K, Swain MV. Insights into the structure and composition of the peritubular dentin organic matrix and the lamina limitans. Micron. 2012;43:229–36.

    Article  CAS  PubMed  Google Scholar 

  55. Bergmans L, Moisiadis P, Teughels W, Van Meerbeek B, Quirynen M, Lambrechts P. Bactericidal effect of Nd:YAG laser irradiation on some endodontic pathogens ex vivo. Int Endod J. 2006;39:547–57.

    Article  CAS  PubMed  Google Scholar 

  56. Martos J, Ferrer Luque CM, Gonzalez-Rodriguez MP, Arias-Moliz MT, Baca P. Antimicrobial activity of essential oils and chloroform alone and combinated with cetrimide against Enterococcus faecalis biofilm. Eur J Microbiol Immunol (Bp). 2013;3:44–8.

    Article  Google Scholar 

  57. Camargo CH, Siviero M, Camargo SE, de Oliveira SH, Carvalho CA, Valera MC. Topographical, diametral, and quantitative analysis of dentin tubules in the root canals of human and bovine teeth. J Endod. 2007;33:422–6.

    Article  PubMed  Google Scholar 

  58. Lopes MB, Sinhoreti MA, Gonini Junior A, Consani S, McCabe JF. Comparative study of tubular diameter and quantity for human and bovine dentin at different depths. Braz Dent J. 2009;20:279–83.

    Article  PubMed  Google Scholar 

  59. Schilke R, Lisson JA, Bauss O, Geurtsen W. Comparison of the number and diameter of dentinal tubules in human and bovine dentine by scanning electron microscopic investigation. Arch Oral Biol. 2000;45:355–61.

    Article  CAS  PubMed  Google Scholar 

  60. Kaptan F, Guven EP, Topcuoglu N, Yazici M, Kulekci G. In vitro assessment of the recurrent doses of topical gaseous ozone in the removal of Enterococcus faecalis biofilms in root canals. Niger J Clin Pract. 2014;17:573–8.

    Article  CAS  PubMed  Google Scholar 

  61. Neelakantan P, Cheng CQ, Mohanraj R, Sriraman P, Subbarao C, Sharma S. Antibiofilm activity of three irrigation protocols activated by ultrasonic, diode laser or Er:YAG laser in vitro. Int Endod J. 2015;48:602–10.

    Article  CAS  PubMed  Google Scholar 

  62. Lin J, Shen Y, Haapasalo M. A comparative study of biofilm removal with hand, rotary nickel-titanium, and self-adjusting file instrumentation using a novel in vitro biofilm model. J Endod. 2013;39:658–63.

    Article  PubMed  Google Scholar 

  63. Ma J, Wang Z, Shen Y, Haapasalo M. A new noninvasive model to study the effectiveness of dentin disinfection by using confocal laser scanning microscopy. J Endod. 2011;37:1380–5.

    Article  PubMed  Google Scholar 

  64. Wang Z, Shen Y, Haapasalo M. Dentin extends the antibacterial effect of endodontic sealers against Enterococcus faecalis biofilms. J Endod. 2014;40:505–8.

    Article  PubMed  Google Scholar 

  65. Albuquerque MT, Junqueira JC, Coelho MB, de Carvalho CA, Valera MC. Novel in vitro methodology for induction of Enterococcus faecalis biofilm on apical resorption areas. Indian J Dent Res. 2014;25:535–8.

    Article  PubMed  Google Scholar 

  66. Diogenes A, Ruparel NB, Shiloah Y, Hargreaves KM. Regenerative endodontics: a way forward. J Am Dent Assoc. 2016;147:372–80.

    Article  PubMed  Google Scholar 

  67. Kontakiotis EG, Filippatos CG, Agrafioti A. Levels of evidence for the outcome of regenerative endodontic therapy. J Endod. 2014;40:1045–53.

    Article  PubMed  Google Scholar 

  68. Shimizu E, Jong G, Partridge N, Rosenberg PA, Lin LM. Histologic observation of a human immature permanent tooth with irreversible pulpitis after revascularization/regeneration procedure. J Endod. 2012;38:1293–7.

    Article  PubMed  Google Scholar 

  69. Martin G, Ricucci D, Gibbs JL, Lin LM. Histological findings of revascularized/revitalized immature permanent molar with apical periodontitis using platelet-rich plasma. J Endod. 2013;39:138–44.

    Article  PubMed  Google Scholar 

  70. Gomes-Filho JE, Duarte PC, Ervolino E, Mogami Bomfim SR, Xavier Abimussi CJ, Mota da Silva Santos L, et al. Histologic characterization of engineered tissues in the canal space of closed-apex teeth with apical periodontitis. J Endod. 2013;39:1549–56.

    Article  PubMed  Google Scholar 

  71. Becerra P, Ricucci D, Loghin S, Gibbs JL, Lin LM. Histologic study of a human immature permanent premolar with chronic apical abscess after revascularization/revitalization. J Endod. 2014;40:133–9.

    Article  PubMed  Google Scholar 

  72. Al Shahrani M, DiVito E, Hughes CV, Nathanson D, Huang GT. Enhanced removal of Enterococcus faecalis biofilms in the root canal using sodium hypochlorite plus photon-induced photoacoustic streaming: an in vitro study. Photomed Laser Surg. 2014;32:260–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Trevino EG, Patwardhan AN, Henry MA, Perry G, Dybdal-Hargreaves N, Hargreaves KM, et al. Effect of irrigants on the survival of human stem cells of the apical papilla in a platelet-rich plasma scaffold in human root tips. J Endod. 2011;37:1109–15.

    Article  PubMed  Google Scholar 

  74. Kumar H, Al-Ali M, Parashos P, Manton DJ. Management of 2 teeth diagnosed with dens invaginatus with regenerative endodontics and apexification in the same patient: a case report and review. J Endod. 2014;40:725–31.

    Article  PubMed  Google Scholar 

  75. Galler KM, Buchalla W, Hiller KA, Federlin M, Eidt A, Schiefersteiner M, et al. Influence of root canal disinfectants on growth factor release from dentin. J Endod. 2015;41:363–8. This recent manuscript demonstrates that growth factors can be released directly from dentin via EDTA conditioning. Moreover, findings from this research indicate that the use of disinfecting solutions or medicaments can amplify or attenuate growth factor release.

    Article  PubMed  Google Scholar 

  76. Smith AJ, Duncan HF, Diogenes A, Simon S, Cooper PR. Exploiting the bioactive properties of the dentin-pulp complex in regenerative endodontics. J Endod. 2016;42:47–56.

    Article  PubMed  Google Scholar 

  77. Smith AJ, Leaver AG. Distribution of the EDTA-soluble non-collagenous organic matrix components of rabbit incisor dentine. Arch Oral Biol. 1981;26(8):643–9.

    Article  CAS  PubMed  Google Scholar 

  78. Smith EL, Colombo JS, Sloan AJ, Waddington RJ. TGF-beta1 exposure from bone surfaces by chemical treatment modalities. Eur Cell Mater. 2011;21:193–201.

    CAS  PubMed  Google Scholar 

  79. Zhao S, Sloan AJ, Murray PE, Lumley PJ, Smith AJ. Ultrastructural localisation of TGF-beta exposure in dentine by chemical treatment. Histochem J. 2000;32:489–94.

    Article  CAS  PubMed  Google Scholar 

  80. Macedo RG, Robinson JP, Verhaagen B, Walmsley AD, Versluis M, Cooper PR, et al. A novel methodology providing insights into removal of biofilm-mimicking hydrogel from lateral morphological features of the root canal during irrigation procedures. Int Endod J. 2014;47:1040–51.

    Article  CAS  PubMed  Google Scholar 

  81. Molander A, Warfvinge J, Reit C, Kvist T. Clinical and radiographic evaluation of one- and two-visit endodontic treatment of asymptomatic necrotic teeth with apical periodontitis: a randomized clinical trial. J Endod. 2007;33:1145–8.

    Article  PubMed  Google Scholar 

  82. Shokraneh A, Farhad AR, Farhadi N, Saatchi M, Hasheminia SM. Antibacterial effect of triantibiotic mixture versus calcium hydroxide in combination with active agents against Enterococcus faecalis biofilm. Dent Mater J. 2014;33:733–8.

    Article  CAS  PubMed  Google Scholar 

  83. Tawfik H, Abu-Seida AM, Hashem AA, Nagy MM. Regenerative potential following revascularization of immature permanent teeth with necrotic pulps. Int Endod J. 2013;46:910–22.

    Article  CAS  PubMed  Google Scholar 

  84. Grossman LI. Polyantibiotic treatment of pulpless teeth. J Am Dent Assoc. 1951;43:265–78.

    Article  CAS  PubMed  Google Scholar 

  85. Bansal R, Jain A. Overview on the current antibiotic containing agents used in endodontics. N Am J Med Sci. 2014;6:351–8.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hoshino E, Kurihara-Ando N, Sato I, Uematsu H, Sato M, Kota K, et al. In-vitro antibacterial susceptibility of bacteria taken from infected root dentine to a mixture of ciprofloxacin, metronidazole and minocycline. Int Endod J. 1996;29:125–30.

    Article  CAS  PubMed  Google Scholar 

  87. Sato I, Ando-Kurihara N, Kota K, Iwaku M, Hoshino E. Sterilization of infected root-canal dentine by topical application of a mixture of ciprofloxacin, metronidazole and minocycline in situ. Int Endod J. 1996;29:118–24.

    Article  CAS  PubMed  Google Scholar 

  88. Sato T, Hoshino E, Uematsu H, Noda T. In vitro antimicrobial susceptibility to combinations of drugs on bacteria from carious and endodontic lesions of human deciduous teeth. Oral Microbiol Immunol. 1993;8:172–6.

    Article  CAS  PubMed  Google Scholar 

  89. Takushige T, Cruz EV, Asgor Moral A, Hoshino E. Endodontic treatment of primary teeth using a combination of antibacterial drugs. Int Endod J. 2004;37:132–8.

    Article  CAS  PubMed  Google Scholar 

  90. Windley 3rd W, Teixeira F, Levin L, Sigurdsson A, Trope M. Disinfection of immature teeth with a triple antibiotic paste. J Endod. 2005;31:439–43.

    Article  PubMed  Google Scholar 

  91. Reynolds K, Johnson JD, Cohenca N. Pulp revascularization of necrotic bilateral bicuspids using a modified novel technique to eliminate potential coronal discolouration: a case report. Int Endod J. 2009;42:84–92.

    Article  CAS  PubMed  Google Scholar 

  92. Ruparel NB, Teixeira FB, Ferraz CC, Diogenes A. Direct effect of intracanal medicaments on survival of stem cells of the apical papilla. J Endod. 2012;38:1372–5.

    Article  PubMed  Google Scholar 

  93. Althumairy RI, Teixeira FB, Diogenes A. Effect of dentin conditioning with intracanal medicaments on survival of stem cells of apical papilla. J Endod. 2014;40:521–5.

    Article  PubMed  Google Scholar 

  94. Bottino MC, Thomas V, Schmidt G, Vohra YK, Chu TM, Kowolik MJ, et al. Recent advances in the development of GTR/GBR membranes for periodontal regeneration--a materials perspective. Dent Mater. 2012;28:703–21.

    Article  CAS  PubMed  Google Scholar 

  95. Gomes BP, Pinheiro ET, Gade-Neto CR, Sousa EL, Ferraz CC, Zaia AA, et al. Microbiological examination of infected dental root canals. Oral Microbiol Immunol. 2004;19:71–6.

    Article  CAS  PubMed  Google Scholar 

  96. Schaudinn C, Carr G, Gorur A, Jaramillo D, Costerton JW, Webster P. Imaging of endodontic biofilms by combined microscopy (FISH/cLSM - SEM). J Microsc. 2009;235:124–7.

    Article  CAS  PubMed  Google Scholar 

  97. Marrie TJ, Nelligan J, Costerton JW. A scanning and transmission electron microscopic study of an infected endocardial pacemaker lead. Circulation. 1982;66:1339–41.

    Article  CAS  PubMed  Google Scholar 

  98. Ordinola-Zapata R, Bramante CM, Minotti PG, Cavenago BC, Garcia RB, Bernardineli N, et al. Antimicrobial activity of triantibiotic paste, 2% chlorhexidine gel, and calcium hydroxide on an intraoral-infected dentin biofilm model. J Endod. 2013;39:115–8.

    Article  PubMed  Google Scholar 

  99. Sigusch BW, Kranz S, Klein S, Volpel A, Harazim S, Sanchez S, et al. Colonization of Enterococcus faecalis in a new SiO/SiO(2)-microtube in vitro model system as a function of tubule diameter. Dent Mater. 2014;30:661–8.

    Article  CAS  PubMed  Google Scholar 

  100. Nair PN. Endodontic biofilm, technology and pulpal regenerative therapy: where do we go from here? Int Endod J. 2014;47:1003–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

M.C.B. acknowledges start-up funds from the Indiana University School of Dentistry, the NIH/NIDCR (Grant No. DE023552), and an International Development Funds (IDF) Grant from Indiana University Purdue University (IUPUI/OVCR). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco C. Bottino.

Ethics declarations

Conflict of Interest

Maria T. P. Albuquerque, Juliana Y. Nagata, Anibal R. Diogenes, Asma A. Azabi, Richard L. Gregory, and Marco C. Bottino declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Dental Restorative Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albuquerque, M.T.P., Nagata, J.Y., Diogenes, A.R. et al. Clinical Perspective of Electrospun Nanofibers as a Drug Delivery Strategy for Regenerative Endodontics. Curr Oral Health Rep 3, 209–220 (2016). https://doi.org/10.1007/s40496-016-0103-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40496-016-0103-1

Keywords

Navigation