Skip to main content

Advertisement

Log in

Fusion imaging for intra-operative ultrasound-based navigation in neurosurgery

  • Pictorial Essay
  • Published:
Journal of Ultrasound Aims and scope Submit manuscript

Abstract

The major shortcoming of image-guided navigation systems is the use of presurgically acquired image data, which does not account for intra-operative changes such as brain shift, tissue deformation and tissue removal occurring during the surgical procedure. Intra-operative ultrasound (iUS) is becoming widely used in neurosurgery but they lack orientation and panoramic view. In this article, we describe our procedure for US-based real-time neuro-navigation during surgery. We used fusion imaging between preoperative magnetic resonance imaging (MRI) and iUS for brain lesion removal in 67 patients so far. Surgical planning is based on preoperative MRI only. iUS images obtained during surgery are fused with the preoperative MRI. Surgery is performed under intra-operative US control. Relying on US imaging, it is possible to recalibrate navigated MRI imaging, adjusting distortion due to brain shift and tissue resection, continuously updating the two modalities. Ultrasound imaging provides excellent visualization of targets, their margins and surrounding structures. The use of navigated MRI is helpful in better understanding cerebral ultrasound images, providing orientation and panoramic view. Intraoperative US-guided neuro-navigation adjustments are very accurate and helpful in the event of brain shift. The use of this integrated system allows for a true real-time feedback during surgery.

Sommario

Il principale difetto della neurochirurgia guidata da immagini è il basarsi su immagini acquisite prima dell’intervento, che per ovvie ragioni non possono tenere conto di fenomeni intra-operatori come il brain-shift, la deformazione dei tessuti e l’asportazione di tessuto patologico. L’ecografia intra-operatoria (iUS) sta acquisendo sempre maggior rilevanza in ambito neurochirurgico ma è limitata dalla difficoltosa interpretazione dell’orientamento delle immagini e dalla scarsa panoramicità. In questo articolo descriviamo la nostra tecnica di neuronavigazione real-time basata sull’ecografia intra-operatoria. Fino ad ora abbiamo impiegato la fusione d’immagini tra la risonanza magnetica (MRI) pre-operatoria e l’iUS in 67 pazienti affetti da neoplasie cerebrali. La pianificazione dell’intervento e l’approccio chirurgico è basata sulla (MRI) pre-operatoria mentre l’intervento è guidato dall’iUS. Basandosi sull’iUS è possibile correggere la calibrazione delle immagini (MRI) pre-operatorie correggendo il brain-shift, aggiornando continuamente le due modalità. L’ecografia intra-operatoria permette una eccellente identificazione dei target, dei margini e delle strutture circostanti. L’uso del navigatore basato su (MRI) pre-operatoria è utile nella comprensione delle immagini ecografiche soprattutto per quanto riguarda l’orientazione e la visione panoramica. Le correzione del sistema di neuronavigazione basate sull’iUS sono accurate e utili nel caso di fenomeni intra-operatori come il brain-shift, la deformazione dei tessuti e l’asportazione di tessuto patologico. La neuronavigazione baasata sulla fusione d’immagini tra iUS e (MRI) pre-operatoria permette un vero feeback in real-time durante la chirurgia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Orringer DA, Golby A, Jolesz F (2012) Neuronavigation in the surgical management of brain tumors: current and future trends. Expert Rev Med Devices 9(5):491–500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Dorward NL, Alberti O, Velani B, Gerritsen FA, Harkness WF, Kitchen ND, Thomas DG (1998) Postimaging brain distortion: magnitude, correlates, and impact on neuronavigation. J Neurosurg 88(4):656–662

    Article  CAS  PubMed  Google Scholar 

  3. Nimsky C, Ganslandt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R (2000) Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 47(5):1070–1079 (discussion 1079–1080)

    Article  CAS  PubMed  Google Scholar 

  4. Stieglitz LH, Fichtner J, Andres R, Schucht P, Krahenbuhl AK, Raabe A, Beck J (2013) The silent loss of neuronavigation accuracy: a systematic retrospective analysis of factors influencing the mismatch of frameless stereotactic systems in cranial neurosurgery. Neurosurgery 72(5):796–807

    Article  PubMed  Google Scholar 

  5. Black PM, Moriarty T, Alexander E 3rd, Stieg P, Woodard EJ, Gleason PL, Martin CH, Kikinis R, Schwartz RB, Jolesz FA (1997) Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery 41(4):831–842 (discussion 842–835)

    Article  CAS  PubMed  Google Scholar 

  6. Gerganov VM, Samii A, Akbarian A, Stieglitz L, Samii M, Fahlbusch R (2009) Reliability of intraoperative high-resolution 2D ultrasound as an alternative to high-field strength MR imaging for tumor resection control: a prospective comparative study. J Neurosurg 111(3):512–519

    Article  PubMed  Google Scholar 

  7. Hammoud MA, Ligon BL, elSouki R, Shi WM, Schomer DF, Sawaya R (1996) Use of intraoperative ultrasound for localizing tumors and determining the extent of resection: a comparative study with magnetic resonance imaging. J Neurosurg 84(5):737–741

    Article  CAS  PubMed  Google Scholar 

  8. Moiyadi AV (2014) Objective assessment of intraoperative ultrasound in brain tumors. Acta Neurochir (Wien) 156(4):703–704

    Article  Google Scholar 

  9. Unsgaard G, Gronningsaeter A, Ommedal S, Nagelhus Hernes TA (2002) Brain operations guided by real-time two-dimensional ultrasound: new possibilities as a result of improved image quality. Neurosurgery 51(2):402–411 (discussion 411–402)

    PubMed  Google Scholar 

  10. Pasto ME, Rifkin MD (1984) Intraoperative ultrasound examination of the brain: possible pitfalls in diagnosis and biopsy guidance. J Ultrasound Med 3(6):245–249

    CAS  PubMed  Google Scholar 

  11. Lindner D, Trantakis C, Renner C, Arnold S, Schmitgen A, Schneider J, Meixensberger J (2006) Application of intraoperative 3D ultrasound during navigated tumor resection. Minim Invasive Neurosurg 49(4):197–202

    Article  CAS  PubMed  Google Scholar 

  12. Rasmussen IA Jr, Lindseth F, Rygh OM, Berntsen EM, Selbekk T, Xu J, Nagelhus Hernes TA, Harg E, Haberg A, Unsgaard G (2007) Functional neuronavigation combined with intra-operative 3D ultrasound: initial experiences during surgical resections close to eloquent brain areas and future directions in automatic brain shift compensation of preoperative data. Acta Neurochir (Wien) 149(4):365–378

    Article  Google Scholar 

  13. Crocetti L, Lencioni R, Debeni S, See TC, Pina CD, Bartolozzi C (2008) Targeting liver lesions for radiofrequency ablation: an experimental feasibility study using a CT-US fusion imaging system. Invest Radiol 43(1):33–39

    Article  PubMed  Google Scholar 

  14. Jung EM, Schreyer AG, Schacherer D, Menzel C, Farkas S, Loss M, Feuerbach S, Zorger N, Fellner C (2009) New real-time image fusion technique for characterization of tumor vascularisation and tumor perfusion of liver tumors with contrast-enhanced ultrasound, spiral CT or MRI: first results. Clin Hemorheol Microcirc 43(1–2):57–69

    CAS  PubMed  Google Scholar 

  15. Montali G, Solbiati L, Croce F, Ierace T, Ravetto C (1982) Fine-needle aspiration biopsy of liver focal lesions ultrasonically guided with a real-time probe. Report on 126 cases. Br J Radiol 55(658):717–723

    Article  CAS  PubMed  Google Scholar 

  16. Nakai M, Sato M, Sahara S, Takasaka I, Kawai N, Minamiguchi H, Tanihata H, Kimura M, Takeuchi N (2009) Radiofrequency ablation assisted by real-time virtual sonography and CT for hepatocellular carcinoma undetectable by conventional sonography. Cardiovasc Interv Radiol 32(1):62–69

    Article  Google Scholar 

  17. Ross CJ, Rennert J, Schacherer D, Girlich C, Hoffstetter P, Heiss P, Jung W, Feuerbach S, Zorger N, Jung EM (2010) Image fusion with volume navigation of contrast enhanced ultrasound (CEUS) with computed tomography (CT) or magnetic resonance imaging (MRI) for post-interventional follow-up after transcatheter arterial chemoembolization (TACE) of hepatocellular carcinomas (HCC): preliminary results. Clin Hemorheol Microcirc 46(2–3):101–115

    CAS  PubMed  Google Scholar 

  18. Park HJ, Lee MW, Lee MH, Hwang J, Kang TW, Lim S, Rhim H, Lim HK (2013) Fusion imaging-guided percutaneous biopsy of focal hepatic lesions with poor conspicuity on conventional sonography. J Ultrasound Med 32(9):1557–1564

    Article  PubMed  Google Scholar 

  19. Jung TY, Jung S, Kim IY, Park SJ, Kang SS, Kim SH, Lim SC (2006) Application of neuronavigation system to brain tumor surgery with clinical experience of 420 cases. Minim Invasive Neurosurg 49(4):210–215

    Article  PubMed  Google Scholar 

  20. Selbekk T, Jakola AS, Solheim O, Johansen TF, Lindseth F, Reinertsen I, Unsgard G (2013) Ultrasound imaging in neurosurgery: approaches to minimize surgically induced image artefacts for improved resection control. Acta Neurochir (Wien) 155(6):973–980

    Article  Google Scholar 

  21. Le Roux PD, Berger MS, Wang K, Mack LA, Ojemann GA (1992) Low grade gliomas: comparison of intraoperative ultrasound characteristics with preoperative imaging studies. J Neurooncol 13(2):189–198

    Article  PubMed  Google Scholar 

  22. Woydt M, Krone A, Becker G, Schmidt K, Roggendorf W, Roosen K (1996) Correlation of intra-operative ultrasound with histopathologic findings after tumour resection in supratentorial gliomas. A method to improve gross total tumour resection. Acta Neurochir (Wien) 138(12):1391–1398

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mrs. Caroline King for her kind advice in revising the manuscript and Mr. Luca Lodigiani for his technical support. The research leading to these results has received funding from the European Union Seventh Framework Program. FP7/2007-2013 under Grant agreement n.602923.

Conflict of interest

Francesco Prada, Massimiliano Del Bene, Luca Mattei, Cecilia Casali, Assunta Filippini, Federico Legnani, Antonella Mangraviti, Andrea Saladino, Alessandro Perin, Carla Richetta, Ignazio Vetrano, Alessandro Moiraghi, Marco Saini and Francesco DiMeco have no conflict of interest to disclose.

Informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000 (5). All patients provided written informed consent to enrollment in the study and to the inclusion in this article of information that could potentially lead to their identification.

Human and animal studies

The study was conducted in accordance with all institutional and national guidelines for the care and use of laboratory animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Prada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prada, F., Del Bene, M., Mattei, L. et al. Fusion imaging for intra-operative ultrasound-based navigation in neurosurgery. J Ultrasound 17, 243–251 (2014). https://doi.org/10.1007/s40477-014-0111-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40477-014-0111-8

Keywords

Navigation