Skip to main content
Log in

Taylor–Lie formulation based discretization of nonlinear systems

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This paper proposes a discretization technique based on Taylor–Lie formulation. It also presents an overview of various techniques that can be applied for the discretization of a class of nonlinear systems. An in-depth analysis and comparison of the proposed technique with existing techniques has also been done. The efficiency of these different techniques have been compared on the basis of approximation error and discrete model complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tabak D (1971) Digitalisation of control systems. Comput Aided Des 3(2):13–18. doi:10.1016/0010-4485(71)90063-7. http://www.sciencedirect.com/science/article/pii/0010448571900637

  2. Kuo CB, Singh G, Yackel AR (1973) Digital approximation of continuous data control systems by point-by-point state comparison. Comput Electr Eng 1(2):155–170

    Article  MATH  Google Scholar 

  3. Kuo CB, Singh GA, Yackel R (1974) Digital redesign of continuous systems by matching of states at multiple sampling periods. Automatica 10(1):105–111. doi:10.1016/0005-1098(74)90013-2. http://www.sciencedirect.com/science/article/pii/0005109874900132

  4. Rattan K, Yeh HH (1978) Discretizing continuous-data control systems. Comput Aided Des 10(5):299–306. doi:10.1016/0010-4485(78)90031-3. http://www.sciencedirect.com/science/article/pii/0010448578900313

  5. Steeb WH, Wilhelm F (1980) Non-linear autonomous systems of differential equations and Carleman linearization procedure. J Math Anal Appl 77(2):601–611. doi:10.1016/0022-247X(80)90250-4. http://www.sciencedirect.com/science/article/pii/0022247X80902504

  6. Monaco S, Normand-Cyrot D (1984) Invariant distributions for discrete-time nonlinear systems. Syst Control Lett 5(3):191–196. doi:10.1016/S0167-6911(84)80102-4

    Article  MathSciNet  MATH  Google Scholar 

  7. Elliott D (1985) Invariant manifolds for time-discretizations of nonlinear systems, pp 724–726. doi:10.1109/CDC.1985.268592

  8. Hanselmann H (1987) Implementation of digital controllers—a survey. Automatica 23(1):7–32. doi:10.1016/0005-1098(87)90115-4

    Article  MATH  Google Scholar 

  9. Monaco S, Normand-Cyrot D (1988) Functional expansions for nonlinear discrete-time systems. Math Syst Theory 21(1):235–254. doi:10.1007/BF02088015

    Article  MathSciNet  MATH  Google Scholar 

  10. Barbot JP, Monaco S, Normand-Cyrot D, Pantalos N (1991) Discretization schemes for nonlinear singularly perturbed systems. In: Proceedings of the 30th IEEE conference on decision and control, vol 1, pp 443–448. doi:10.1109/CDC.1991.261339

  11. Svoronos SA, Papageorgiou D, Tsiligiannis C (1994) Discretization of nonlinear control systems via the carleman linearization. Chem Eng Sci 49(19):3263–3267. doi:10.1016/0009-2509(94)00141-3

    Article  Google Scholar 

  12. Kazantzis N, Kravaris C (1999) Time-discretization of nonlinear control systems via taylor methods. Comput Chem Eng 23(6):763–784. doi:10.1016/S0098-1354(99)00007-1

    Article  Google Scholar 

  13. Chen B, Solis F (1998) Discretizations of nonlinear differential equations using explicit finite order methods. J Comput Appl Math 90(2):171–183. doi:10.1016/S0377-0427(98)00017-X. http://www.sciencedirect.com/science/article/pii/S037704279800017X

  14. Chelouah A, Petitot M (1995) Finitely discretizable nonlinear systems: concepts and definitions. In: Proceedings of the 34th IEEE conference on decision and control, vol 1, pp 19–24. doi:10.1109/CDC.1995.478560

  15. Giamberardino PD, Monaco S, Normand-Cyrot D (1996) Digital control through finite feedback discretizability. In: Proceedings of the IEEE international conference on robotics and automation, vol 4, pp 3141–3146. doi:10.1109/ROBOT.1996.509190

  16. Fujimoto H, Kawamura A, Tomizuka M (1999) Generalized digital redesign method for linear feedback system based on n-delay control. IEEE/ASME Trans Mech 4(2):101–109. doi:10.1109/3516.769537

  17. Grüne L, Worthmann K, Nes̆ić D (2008) Continuous-time controller redesign for digital implementation: a trajectory based approach. Automatica 44(1):225–232. doi:10.1016/j.automatica.2007.05.003

  18. Laila DN (2003) Design and analysis of nonlinear sampled-data control systems. Ph.D. Thesis, Imperial College, London

  19. Monaco S, Normand-Cyrot D (2007) Advanced tools for nonlinear sampled-data systems analysis and control. Eur J Control 13(2–3):221–241. doi:10.3166/ejc.13.221-241

    Article  MATH  Google Scholar 

  20. Nes̆ić D, Grüne L (2005) Lyapunov-based continuous-time nonlinear controller redesign for sampled-data implementation. Automatica 41(7):1143–1156. doi:10.1016/j.automatica.2005.03.001

    Article  MathSciNet  MATH  Google Scholar 

  21. Nes̆ić D, Teel AR (2001) Sampled-data control of nonlinear systems: an overview of recent results. In: Moheimani S (ed) Perspectives in robust control. Lecture notes in control and information sciences, vol 268. Springer, London, pp 221–239. doi:10.1007/BFb0110623

  22. Janardhanan S, Bandyopadhyay B (2006) On discretization of continuous-time terminal sliding mode. IEEE Trans Autom Control 51(9):1532–1536. doi:10.1109/TAC.2006.880805

    Article  MathSciNet  MATH  Google Scholar 

  23. Meena GD, Janardhanan S (2016) Taylor discretization based class of exactly discretizable nonlinear systems. IFAC PapersOnLine 49(1):510–515. doi:10.1016/j.ifacol.2016.03.105. http://www.sciencedirect.com/science/article/pii/S2405896316301057. 4th IFAC conference on advances in control and optimization of dynamical systems ACODS 2016

  24. Ogata K (1995) Discrete-time control systems. PHI Learning India, New Delhi

    Google Scholar 

  25. McCabe TJ (1976) A complexity measure. IEEE Trans Softw Eng 4:308–320

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gagan Deep Meena.

Appendix

Appendix

Fourth derivative for the discrete time version of (26) is,

$$\begin{aligned} \begin{aligned}&D^{(4)}=d_{0}^{(4)}(x)+d_{1}^{(4)}(x)u+d_{2}^{(4)}(x)u^2+d_{3}^{(4)}(x)u^3\\&\quad \quad \quad \;+d_{4}^{(4)}(x)u^4 \\&\text {where }d_{0}^{(4)}(x)= \frac{\partial d_0^{(3)}}{\partial x}(x) \cdot f(x)={\mathcal {L}}_{d_0^{(3)}}f=-105x^{9},\\&d_{1}^{(4)}(x)=\frac{\partial d_1^{(3)}}{\partial x}(x) \cdot f(x)+\frac{\partial d_0^{(3)}}{\partial x}(x) \cdot g(x)\\&\quad \quad \quad \quad ={\mathcal {L}}_{d_1^{(3)}}f+{\mathcal {L}}_{d_0^{(3)}}g = -240x^{7},\\&d_{2}^{(4)}(x)=\frac{\partial d_2^{(3)}}{\partial x}(x) \cdot f(x)+\frac{\partial d_1^{(3)}}{\partial x}(x) \cdot g(x)\\&\quad \quad \quad \quad ={\mathcal {L}}_{d_2^{(3)}}f+{\mathcal {L}}_{d_1^{(3)}}g = 174x^{5},~~~~~~~~~~\\&d_{3}^{(4)}(x)=\frac{\partial d_3^{(3)}}{\partial x}(x) \cdot f(x)+\frac{\partial d_2^{(3)}}{\partial x}(x) \cdot g(x)\\&\quad \quad \quad \quad ={\mathcal {L}}_{d_3^{(3)}}f+{\mathcal {L}}_{d_2^{(3)}}g = -40x^{3},~~~~~~~~~~\\&d_{4}^{(4)}(x)=\frac{\partial d_3^{(3)}}{\partial x}(x) \cdot g(x)={\mathcal {L}}_{d_3^{(3)}}g = -x,~~~~~~~~~~\\&D^{(4)}={\mathcal {L}}_{d_0^{(3)}}f+({\mathcal {L}}_{d_1^{(3)}}f+{\mathcal {L}}_{d_0^{(3)}}g)u+({\mathcal {L}}_{d_2^{(3)}}f +{\mathcal {L}}_{d_1^{(3)}}g)u^2\\&\quad \quad \quad +({\mathcal {L}}_{d_3^{(3)}}f+{\mathcal {L}}_{d_2^{(3)}}g)u^3+({\mathcal {L}}_{d_3^{(3)}}g)u^4 \\&D^{(4)}=-105x^{9}-240x^{7}+174x^{5}-40x^{3}-x \end{aligned} \end{aligned}$$

and fifth derivative for the discrete time version of (26) is,

$$\begin{aligned}&D^{(5)}=d_{0}^{(5)}(x)+d_{1}^{(5)}(x)u+d_{2}^{(5)}(x)u^2+d_{3}^{(5)}(x)u^3\nonumber \\&\quad \quad \quad \quad +d_{4}^{(5)}(x)u^4 +d_{5}^{(5)}(x)u^5\nonumber \\&\text {where }d_{0}^{(5)}(x)= \frac{\partial d_0^{(4)}}{\partial x}(x) \cdot f(x)={\mathcal {L}}_{d_0^{(4)}}f= -945 x^{11},\nonumber \\&d_{1}^{(5)}(x)=\frac{\partial d_1^{(4)}}{\partial x}(x) \cdot f(x)+\frac{\partial d_0^{(4)}}{\partial x}(x) \cdot g(x)\nonumber \\&\quad \quad \quad \quad ={\mathcal {L}}_{d_1^{(4)}}f+{\mathcal {L}}_{d_0^{(4)}}g = 2625x^{9} ,\nonumber \\&d_{2}^{(5)}(x)=\frac{\partial d_2^{(4)}}{\partial x}(x) \cdot f(x)+\frac{\partial d_1^{(4)}}{\partial x}(x) \cdot g(x)\nonumber \\&\quad \quad \quad \quad ={\mathcal {L}}_{d_2^{(4)}}f+{\mathcal {L}}_{d_1^{(4)}}g = -2550x^{7} ,~~~~~~~~~~\nonumber \\&d_{3}^{(5)}(x)=\frac{\partial d_3^{(4)}}{\partial x}(x) \cdot f(x)+\frac{\partial d_2^{(4)}}{\partial x}(x) \cdot g(x)\nonumber \\&\quad \quad \quad \quad ={\mathcal {L}}_{d_3^{(4)}}f+{\mathcal {L}}_{d_2^{(4)}}g = 990x^{5},~~~~~~~~~~\nonumber \\&d_{4}^{(5)}(x)=\frac{\partial d_4^{(4)}}{\partial x}(x) \cdot f(x)+\frac{\partial d_3^{(4)}}{\partial x}(x) \cdot g(x)\nonumber \\&\quad \quad \quad \quad ={\mathcal {L}}_{d_4^{(4)}}f+{\mathcal {L}}_{d_3^{(4)}}g = -121x^{3},~~~~~~~~~~\nonumber \\&d_{5}^{(5)}(x)=\frac{\partial d_4^{(4)}}{\partial x}(x) \cdot g(x)={\mathcal {L}}_{d_4^{(4)}}g = x,~~~~~~~~~~\nonumber \\&D^{(5)}={\mathcal {L}}_{d_0^{(4)}}f+{\mathcal {L}}_{d_1^{(4)}}f+({\mathcal {L}}_{d_0^{(4)}}g)u+ ({\mathcal {L}}_{d_2^{(4)}}f+{\mathcal {L}}_{d_1^{(4)}}g) u^{2}\nonumber \\&\quad \quad \quad \quad +({\mathcal {L}}_{d_3^{(4)}}f+{\mathcal {L}}_{d_2^{(4)}}g)u^{3}+ ({\mathcal {L}}_{d_4^{(4)}}f+{\mathcal {L}}_{d_3^{(4)}}g)u^{4}+ ({\mathcal {L}}_{d_4^{(4)}}g)u^{5}\nonumber \\&D^{(5)}= -945 x^{11}+2625x^{9}u-2550x^{7}u^{2}\nonumber \\&\quad \quad \quad \quad +990x^{5}u^{3}-121x^{3}u^{4}+xu^{5} \end{aligned}$$
(29)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, G.D., Janardhanan, S. Taylor–Lie formulation based discretization of nonlinear systems. Int. J. Dynam. Control 6, 459–467 (2018). https://doi.org/10.1007/s40435-017-0317-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-017-0317-7

Keywords

Navigation