Skip to main content
Log in

Smith predictor based fractional-order control design for time-delay integer-order systems

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

The development of fractional-order controller design methods having a few tuning parameters in the time/frequency-domain is an attractive research topic. There are a few design methods using time-domain specifications. Considering a Smith predictor structure, a simple and efficient analytical method to design a fractional-order controller for time-delay integer-order systems is proposed, in this paper. The design procedure is based on time-domain specifications. The design requirements are the percentage of overshoot and settling time. To achieve these requirements, several tuning formulas are derived based on ideal closed-loop transfer function. The main advantage of the proposed method is that it has only two tuning parameters, which can be obtained using an explicit set of tuning formulas. To demonstrate the performance of the proposed controller and to compare it with those provided by several well-known design techniques, the proposed design method is applied to two simulation examples. Finally, a robustness test is carried out considering plant uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Tavakoli S, Griffin I, Fleming PJ (2007) Multi-objective optimization approach to the PI tuning problem. IEEE Congr Evolut Comput doi:10.1109/CEC.2007.4424876

  2. Kaya I (2003) Obtaining controller parameters for a new PI-PD Smith predictor using auto-tuning. J Process Control 13:465–472. doi:10.1016/S0959-1524(02)00086-0

    Article  Google Scholar 

  3. Smith OJ (1959) A controller to overcome dead time. ISA J 6:28–33

    Google Scholar 

  4. Watanabe K, Ito M (1981) A process model control for linear systems with delay. IEEE Trans Automat Contr 26:1261–1269. doi:10.1109/TAC.1981.1102802

    Article  MATH  Google Scholar 

  5. Ingimundarson A, Hägglund T (2002) Performance comparison between PID and dead-time compensating controllers. J Process Control 12:887–895. doi:10.1016/S0959-1524(02)00017-3

    Article  Google Scholar 

  6. Chen YD, Tung PC, Fuh CC (2007) Modified Smith predictor scheme for periodic disturbance reduction in linear delay systems. J Process Control 17:799–804. doi:10.1016/j.jprocont.2007.03.003

    Article  Google Scholar 

  7. Uma S, Rao AS (2016) Enhanced modified Smith predictor for second-order non-minimum phase unstable processes. Int J Syst Sci 47:966–981. doi:10.1080/00207721.2014.911385

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu T, Cai YZ, Gu DY, Zhang WD (2005) New modified Smith predictor scheme for integrating and unstable processes with time delay. IEE Proc Control Theor Appl 152:238–246. doi:10.1049/ip-cta:20041232

    Article  Google Scholar 

  9. Mataušek MR, Ribić AI (2012) Control of stable, integrating and unstable processes by the Modified Smith predictor. J Process Control 22:338–343. doi:10.1016/j.jprocont.2011.08.006

    Article  Google Scholar 

  10. Lee D, Lee M, Sung S, Lee I (1999) Robust PID tuning for Smith predictor in the presence of model uncertainty. J Process Control 9:79–85. doi:10.1016/S0959-1524(98)00036-5

    Article  Google Scholar 

  11. Albertos P, García P (2009) Robust control design for long time-delay systems. J Process Control 19:1640–1648. doi:10.1016/j.jprocont.2009.05.006

    Article  Google Scholar 

  12. Normey-Rico JE, Camacho EF (2009) Unified approach for robust dead-time compensator design. J Process Control 19:38–47. doi:10.1016/j.jprocont.2008.02.003

    Article  Google Scholar 

  13. De Oliveira V, Karimi A (2013) Robust Smith predictor design for time-delay systems with H\(\infty \) performance. IFAC Proc Vol 46:102–107. doi:10.3182/20130204-3-FR-4031.00012

    Article  Google Scholar 

  14. Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley-Interscience, Hoboken

    MATH  Google Scholar 

  15. Oustaloup A, Mathieu B, Lanusse P (1995) The CRONE control of resonant plants: application to a flexible transmission. Eur J Control 1:113–12. doi:10.1016/S0947-3580(95)70014-0

    Article  Google Scholar 

  16. Podlubny I (1999) Fractional-order systems and \(PI^{\lambda }D^{\mu }\)controllers. IEEE Trans Automat Contr 44:208–214. doi:10.1109/9.739144

    Article  MathSciNet  Google Scholar 

  17. Vu TNL, Lee M (2014) Smith predictor based fractional-order PI control for time-delay processes. Korean J Chem Eng 31:1321–1329. doi:10.1007/s11814-014-0076-5

    Article  Google Scholar 

  18. Boudjehem D, Sedraoui M, Boudjehem B (2013) A fractional model for robust fractional order Smith predictor. Nonlinear Dyn 73:1557–1563. doi:10.1007/s11071-013-0885-9

    Article  MathSciNet  Google Scholar 

  19. Feliu-Batlle V, Pérez RR, Garcia FC, Rodriguez LS (2009) Smith predictor based robust fractional order control: application to water distribution in a main irrigation canal pool. J Process Control 19:506–519. doi:10.1016/j.jprocont.2008.05.004

    Article  Google Scholar 

  20. Feliu Batlle V, Rivas-Perez R, Castillo Garcia F (2005) Fractional robust control to delay changes in main irrigation canals. IFAC World Congr 38:28–33. doi:10.3182/20050703-6-CZ-1902.02095

    Google Scholar 

  21. Castillo-Garcia FJ, Feliu-Batlle V, Rivas-Perez R, Sanchez L (2011) Time domain tuning of a fractional order PI\(\alpha \) controller combined with a smith predictor for automation of water distribution in irrigation main channel pools. IFAC Proc Vol 44:15049–15054. doi:10.3182/20110828-6-IT-1002.03138

    Article  Google Scholar 

  22. Castillo-Garcia FJ, Feliu-Batlle V, Rivas-Perez R (2013) Time domain tuning of fractional order controllers combined with a Smith predictor for automation of water distribution in irrigation main channel pools. Asian J Control 15:819–833. doi:10.1002/asjc.558

    Article  MathSciNet  MATH  Google Scholar 

  23. Oustaloup A (1995) La dérivation non entière. Hermes, Paris

    MATH  Google Scholar 

  24. Bode HW (1945) Network analysis and feedback amplifier design. Van Nostrand, New York

  25. Barbosa RS, Machado JT, Ferreira IM (2004) Tuning of PID controllers based on Bode’s ideal transfer function. Nonlinear Dyn 38:305–321. doi:10.1007/s11071-004-3763-7

    Article  MATH  Google Scholar 

  26. Monje CA, Vinagre BM, Feliu V, Chen Y (2008) Tuning and auto-tuning of fractional order controllers for industry applications. Control Eng Pract 16:798–812. doi:10.1016/j.conengprac.2007.08.006

    Article  Google Scholar 

  27. Maâmar B, Rachid M (2014) IMC-PID-fractional-order-filter controllers design for integer-order systems. ISA Trans 53:1620–1628. doi:10.1016/j.isatra.2014.05.007

  28. Saidi B, Amairi M, Najar S, Aoun M (2015) Bode shaping-based design methods of a fractional order PID controller for uncertain systems. Nonlinear Dyn 80:1817–1838. doi:10.1007/s11071-014-1698-1

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Tavakoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safaei, M., Tavakoli, S. Smith predictor based fractional-order control design for time-delay integer-order systems. Int. J. Dynam. Control 6, 179–187 (2018). https://doi.org/10.1007/s40435-017-0312-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-017-0312-z

Keywords

Navigation