Skip to main content
Log in

Further analytic solutions for periodic motions in the Duffing oscillator

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

Harmonic balance method is employed for analytic periodic motions in the Duffing oscillator. Traditionally, one used the perturbation method to discuss the nonlinearity of periodic motions in the Duffing oscillator. For decades, one cannot achieve the appropriate analytical solutions of periodic motions. The harmonic balance method with prescribed-computational accuracy will be used, for a better understanding of nonlinear characteristics of periodic motions in the Duffing oscillator. In this method, the finite Fourier series with coefficient varying with time is adopted to approximately describe periodic motions in nonlinear dynamical system. The dynamical system of the coefficients of the Fourier series is obtained. The equilibrium of such a system gives the constant coefficients in the Fourier series. Thus, the periodic solution is obtained and the stability and bifurcation of the periodic motions can be determined. The analytic periodic motions should be further revisited, since the Duffing oscillator is extensively applied in engineering, and the comprehensive investigation of such periodic motions in the Duffing oscillator is necessary and significant. In this paper, the further analytic solutions of periodic motion in the Duffing oscillator will be investigated, and frequency amplitude characteristics will be discussed, and numerical simulation of periodic motions will be presented. Some new roads from periodic motions to chaos based on generalized harmonic balance method are found, such as independent period-2 motions to chaos and independent period-4 motions to chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Luo ACJ (2012) Continuous dynamical systems. HEP-L&H Scientific, Glen Carbon

    MATH  Google Scholar 

  2. Luo ACJ, Huang JZ (2012) Approximate solutions of periodic motions in nonlinear systems via a generalized harmonic balance. J Vib Control 18:1661–1874

    Article  MathSciNet  Google Scholar 

  3. Luo ACJ, Huang JZ (2012) Analytical dynamics of period-m flows and chaos in nonlinear systems. Int J Bifurc Chaos 22(4):91–116

    Article  MathSciNet  Google Scholar 

  4. Luo ACJ, Huang JZ (2013) Analytical solutions for asymmetric periodic motions to chaos in a hardening Duffing oscillator. Nonlinear Dyn 72:417–438

    Article  MathSciNet  Google Scholar 

  5. Luo ACJ, Han RP (1997) A quantitative stability and bifurcation analyses of a generalized Duffing oscillator with strong nonlinearity. J Frankl Inst 334B:447–459

    Article  MATH  MathSciNet  Google Scholar 

  6. Han RP, Luo ACJ (1996) Comments on “Subharmonic resonances and criteria for escape and chaos in a driven oscillator”. J Sound Vib 196:237–242

    Article  Google Scholar 

  7. Luo ACJ, Han RP (1999) Analytical predictions of chaos in a nonlinear rod. J Sound Vib 227:523–544

    Article  Google Scholar 

  8. Huang ZL, Zhu WQ, Suzuki Y (2000) Stochastic averaging of strongly non-linear oscillators under combined harmonic and white-noise excitations. J Sound Vib 238:233–256

    Article  MATH  MathSciNet  Google Scholar 

  9. Rong H, Xu W, Meng G, Fang T (2001) Response of a Duffing oscillator to combined deterministic harmonic and random excitation. J Sound Vib 242:362–368

    Article  MathSciNet  Google Scholar 

  10. Xu W, He Q, Fang T, Rong H (2004) Stochastic bifurcation in Duffing system subject to harmonic excitation and in presence of random noise. Int J Non-Linear Mech 39:1473–1479

    Article  MATH  MathSciNet  Google Scholar 

  11. Yu JS, Lin YK (2004) Numerical path integration of a non-homogeneous Markov process. Int J Non-Linear Mech 39:1493–1500

    Article  MATH  Google Scholar 

  12. Kerschen G, Worden K, Vakakis AF, Golinval JC (2006) Past, present and future of nonlinear system identification in structural dynamics. Mech Syst Signal Process 20:505–592

    Article  Google Scholar 

  13. Li LM, Billings SA (2010) Analysis of nonlinear oscillators using Volterra series in the frequency domain. J Sound Vib 330:337–355

    Article  Google Scholar 

  14. Zou K, Nagarajaiah S (2015) The solution structure of the Duffing oscillator’s transient response and general solution. Nonlinear Dyn 81:291–305

  15. Panigrahi RS, Feeny RB, Diaz RA (2015) Harmonic balance analysis of snap-through orbits in an undamped Duffing oscillator. ASME J Vib Acoust Trans 137 (Article No. 064502)

  16. Luo ACJ, Yu B (2015) Complex period-1 motions in a periodically forced, quadratic nonlinear oscillator. J Vib Control 21:896–906

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This study was found by the National Nature Science Foundation of China (NSFC) (No. 11272100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayang Ying.

Appendix

Appendix

The \(F_0^{\left( m \right) } ,F_{k/m}^{\left( c \right) } ,F_{k/m}^{\left( s \right) } \) are expressed as follows:

$$\begin{aligned} F_0^{\left( m \right) }= & {} \frac{1}{mT}\int _0^{mT} {f\left( {\mathbf{x}^{*},\dot{\mathbf{x}}^{*},t,\mathbf{p}} \right) dt} =\frac{1}{mT}\int _0^{mT} {Fdt} \nonumber \\= & {} -\delta \dot{a}_0^{(m)} -\alpha a_0^{(m)} -\beta \left( {\left( {a_0^{(m)} } \right) ^3 +\sum _{i=1}^N {\left[ {\frac{3}{2}a_0^{(m)} } \right. } } \right. \nonumber \\&\times \left( {b_{i/m} b_{i/m} +c_{i/m} c_{i/m} } \right) +\sum _{l=1}^N {\sum _{i=1}^N {\sum _{j=1}^N {\left[ {\frac{1}{4}b_{i/m} } \right. } } } \nonumber \\&\times b_{j/m} b_{l/m} \delta _{301} +\left. {\left. {\frac{3}{4}b_{i/m} c_{j/m} c_{l/m} \delta _{302} } \right] } \right) \end{aligned}$$
(18)
$$\begin{aligned} F_{k/m}^{\left( c \right) }= & {} \frac{2}{mT}\int _0^{mT} {f\left( {\mathbf{x}^{*},\dot{\mathbf{x}}^{*},t,\mathbf{p}} \right) \cos \left( \frac{k}{m}\Omega t \right) dt} \nonumber \\= & {} \frac{2}{mT}\int _0^{mT} {F\cos \left( \frac{k}{m}\Omega t \right) dt} \nonumber \\= & {} Q_0 \delta _m^k -\delta {b}'_{k/m} -\alpha b_{k/m} -\beta \left( 3 \left( {a_0^{(m)} } \right) \right. ^{2}b_{k/m} \nonumber \\&+\sum _{i=1}^N {\sum _{j=1}^N {\left[ {\frac{3a_0^{(m)} }{2}\left( {b_{i/m} b_{j/m} \delta _{2c1} \hbox {+}c_{i/m} c_{j/m} \delta _{2c2} } \right) } \right] } } \nonumber \\&+\sum _{l=1}^N {\sum _{i=1}^N {\sum _{j=1}^N {\left[ {\frac{1}{4}b_{i/m} b_{j/m} b_{l/m} \delta _{3c1} } \right. } } } \nonumber \\&+\left. \left. {\frac{3}{4}b_{i/m} c_{j/m} c_{l/m} \delta _{3c2} } \right] \right) \end{aligned}$$
(19)
$$\begin{aligned} F_{k/m}^{\left( s \right) }= & {} \frac{2}{mT}\int _0^{mT} {f\left( {\mathbf{x}^{*},\dot{\mathbf{x}}^{*},t,\mathbf{p}} \right) \sin \left( \frac{k}{m}\Omega t \right) dt}\nonumber \\= & {} \frac{2}{mT}\int _0^{mT} {F\sin \left( \frac{k}{m}\Omega t \right) dt} \nonumber \\= & {} -\delta {c}'_{k/m} -\alpha c_{k/m} -\beta \left( 3\left( {a_0^{(m)} } \right) ^{2}c_{k/m}\right. \nonumber \\&+\sum _{i=1}^N {\sum _{j=1}^N {\left( {3a_0^{(m)} b_{i/m} c_{j/m} \delta _{2s1} } \right) } } \nonumber \\&+\sum _{i=1}^N {\sum _{j=1}^N {\sum _{l=1}^N {\left[ {\frac{1}{4}} \right. } } } c_{i/m} c_{j/m} c_{l/m} \delta _{3s1} \nonumber \\&+\left. \left. {\frac{3}{4}c_{i/m} b_{j/m} b_{l/m} \delta _{3s2} } \right] \right) \end{aligned}$$
(20)

The \(\delta \) function and sign function are

\(\delta _k^l =\left\{ {\begin{array}{ll} 1&{} {l=k} \\ 0&{} {l\ne k} \\ \end{array} } \right. \) and \(\hbox {sgn}\left( k \right) =\left\{ {\begin{array}{ll} 1&{} k\ge 0 \\ -1&{}k<0 \\ \end{array}} \right. \)

In Eqs. (18), (19), (20), the \(\delta \) functions are expressed as follows.

$$\begin{aligned} \delta _{301}= & {} \delta _{i-j+l}^0 +\delta _{i+j-l}^0 +\delta _{i-j-l}^0\\ \delta _{302}= & {} \delta _{i-j+l}^0 +\delta _{i+j-l}^0 -\delta _{i-j-l}^0\\ \delta _{2c1}= & {} \delta _{i+j}^k +\delta _{\left| {i-j} \right| }^k ,\quad {\delta _{2c2} } =-\delta _{i+j}^k +\delta _{\left| {i-j} \right| }^k\\ \delta _{2s1}= & {} \delta _{i+j}^k -\hbox {sgn}(i-j)\delta _{\left| {i-j} \right| }^k\\ \delta _{3c1}= & {} \delta _{i+j+l}^k +\delta _{\left| {i+j-l} \right| }^k +\delta _{\left| {i-j+l} \right| }^k +\delta _{\left| {i-j-l} \right| }^k \\ \delta _{3c2}= & {} -\delta _{i+j+l}^k +\delta _{\left| {i+j-l} \right| }^k +\delta _{\left| {i-j+l} \right| }^k -\delta _{\left| {i-j-l} \right| }^k \\ \delta _{3s1}= & {} -\delta _{i+j+l}^k +\hbox {sgn}\left( {i+j-l} \right) \delta _{\left| {i+j-l} \right| }^k \\&+\hbox {sgn}\left( {i-j+l} \right) \delta _{\left| {i-j+l} \right| }^k -\hbox {sgn}\left( {i-j-l} \right) \delta _{\left| {i-j-l} \right| }^k \\ \delta _{3s2}= & {} \delta _{i+j+l}^k +\hbox {sgn}\left( {i+j-l} \right) \delta _{\left| {i+j-l} \right| }^k \\&+\hbox {sgn}\left( {i-j+l} \right) \delta _{\left| {i-j+l} \right| }^k +\hbox {sgn}\left( {i-j-l} \right) \delta _{\left| {i-j-l} \right| }^k \end{aligned}$$

In the Jacobian matrix, G and H are

$$\begin{aligned} G_r^{\left( 0 \right) }= & {} \frac{\partial F_0^{(m)} }{\partial z\left( r \right) }=-\alpha \delta _r^1 -3\beta \left( {a_0^{(m)} } \right) ^{2}\delta _r^1 \nonumber \\&-\beta \sum _{i=1}^N {\left[ {\frac{3}{2}\left( {b_{i/m}^2 +c_{i/m}^2 } \right) \delta _r^1 } \right. } \nonumber \\&+\left. {\frac{3a_0^{(m)} }{2}\left( {2b_{i/m} \delta _{i+1}^r +2c_{i/m} \delta _{N+i+1}^r } \right) } \right] \nonumber \\&-\beta \sum _{l=1}^N {\sum _{i=1}^N {\sum _{j=1}^N {\left[ {\frac{3}{4}b_{j/m} b_{l/m} \delta _{301} \delta _{i+1}^r } \right. } } } \nonumber \\&+\left. {\left( {\frac{3}{4}c_{j/m} c_{l/m} \delta _{i+1}^r +\frac{3}{2}b_{i/m} c_{l/m} \delta _{N+j+1}^r } \right) \delta _{302} } \right] \end{aligned}$$
(21)
$$\begin{aligned} G_{kr}^{\left( c \right) }= & {} \frac{\partial \left( {F_{k/m}^{(c)} -2\frac{\Omega }{m}k\dot{c}_{k/m} +\left( {\frac{k\Omega }{m}} \right) ^{2}b_{k/m} } \right) }{\partial z\left( r \right) } \nonumber \\&=-\delta \frac{k\Omega }{m}\delta _{N+k+1}^r -\alpha \delta _{k+1}^r -\beta \left( {6a_0^{(m)} b_{k/m} \delta _r^1 } \right. +3\left( {a_0^{(m)} } \right) ^{2}\nonumber \\&\times \delta _{k+1}^r -\beta \sum _{i=1}^N {\sum _{j=1}^N {\left[ {\frac{3}{2}} \right. \left( {b_{i/m} b_{j/m} \delta _{2c1} } \right. } } \left. {+c_{i/m} c_{j/m} \delta _{2c2} } \right) \delta _r^1 \nonumber \\&+\left. {\frac{3a_0^{(m)} }{2}\left( {2b_{j/m} \delta _{2c1} \delta _{i+1}^r } \right. +\left. {2c_{j/m} \delta _{2c2} \delta _{N+i+1}^r } \right) } \right] \nonumber \\&- \beta \sum \limits _{{l = 1}}^{N} {\sum \limits _{{i = 1}}^{N} {\sum \limits _{{j = 1}}^{N} {\left[ {\frac{3}{4}} \right. b_{{j/m}} } } } b_{{l/m}} \delta _{{3c1}} \delta _{{i + 1}}^{r} + \left( {\frac{3}{4}c_{{j/m}} c_{{l/m}} \delta _{{i + 1}}^{r} } \right. \nonumber \\&\left. {\left. {+\frac{3}{2}b_{i/m} c_{l/m} \delta _{N+j+1}^r } \right) \delta _{3c2} } \right] +\left( {\frac{k\Omega }{m}} \right) ^{2}\delta _{k+1}^r \end{aligned}$$
(22)
$$\begin{aligned} G_{kr}^{\left( s \right) }= & {} \frac{\partial \left( {F_{k/m}^{(s)} +2\frac{\Omega }{m}k\dot{b}_{k/m} +\left( {\frac{k\Omega }{m}} \right) ^{2}c_{k/m} } \right) }{\partial z\left( r \right) } \nonumber \\&=\delta \frac{k\Omega }{m}\delta _{k+1}^r -\alpha \delta _{N+k+1}^r -\beta \left( {6a_0^{(m)} c_{k/m} \delta _r^1 } \right. \nonumber \\&+3\left( {a_0^{(m)} } \right) ^{2}\left. {\delta _{N+k+1}^r } \right) -\beta \sum _{i=1}^N {\sum _{j=1}^N {\left[ {3\left( {b_{i/m} c_{j/m} \delta _r^1 } \right. } \right. } } \nonumber \\&\left. {\left. {+a_0^{(m)} c_{j/m} \delta _{i+1}^r +a_0^{(m)} b_{i/m} \delta _{N+j+1}^r } \right) \delta _{2s1} } \right] \nonumber \\&-\beta \sum _{l=1}^N {\sum _{i=1}^N {\sum _{j=1}^N {\left[ \frac{3}{4}c_{j/m} c_{l/m} \delta _{N+i+1}^r \delta _{3s1} +\right. } } } \frac{3}{4}\left( {b_{j/m} b_{l/m} } \right. \nonumber \\&\left. \left. {\times \delta _{N+i+1}^r +2c_{i/m} b_{l/m} \delta _{j+1}^r } \right) \delta _{3s2} \right] +\left( {\frac{k\Omega }{m}} \right) ^{2}\delta _{N+k+1}^r \end{aligned}$$
(23)
$$\begin{aligned} H_r^{\left( 0 \right) }= & {} \frac{\partial F_0^{(m)} }{\partial \dot{z}\left( r \right) }=-\delta \delta _r^1 \end{aligned}$$
(24)
$$\begin{aligned} H_{kr}^{\left( c \right) }= & {} \frac{\partial \left( {F_{k/m}^{(c)} -2\frac{\Omega }{m}k\dot{c}_{k/m} +\left( {\frac{k\Omega }{m}} \right) ^{2}b_{k/m} } \right) }{\partial \dot{z}\left( r \right) } \nonumber \\= & {} -\delta \delta _{k+1}^r -2\frac{\Omega }{m}k\delta _{N+k+1}^r \end{aligned}$$
(25)
$$\begin{aligned} H_{kr}^{\left( s \right) }= & {} \frac{\partial \left( {F_{k/m}^{(s)} +2\frac{\Omega }{m}k\dot{b}_{k/m} +\left( {\frac{k\Omega }{m}} \right) ^{2}c_{k/m} } \right) }{\partial \dot{z}\left( r \right) } \nonumber \\= & {} -\delta \delta _{N+k+1}^r +2\frac{\Omega }{m}k\delta _{k+1}^r \end{aligned}$$
(26)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, J., Jiao, Y. & Chen, Z. Further analytic solutions for periodic motions in the Duffing oscillator. Int. J. Dynam. Control 5, 947–964 (2017). https://doi.org/10.1007/s40435-016-0263-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-016-0263-9

Keywords

Navigation