Skip to main content
Log in

Periodic orbits and bifurcations in discontinuous systems with a hyperbolic boundary

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

The periodic orbits and bifurcations in a class of second-order discontinuous systems with a hyperbolic boundary are studied in this paper. Specifically, a periodically forced discontinuous system described by three different linear subsystems is considered mainly to demonstrate the methodology. Analytical conditions for the reachability of local flows in each sub-domain and the passability of flows on the hyperbolic boundary are developed first. Then, through the return mapping structure of motions, the periodic orbits with or without sliding motions are analytically predicted, and the corresponding bifurcation analyses are carried out. Finally, numerical illustrations of periodic orbits are presented and the G-function is proposed to show the analytical criteria. The results obtained in this paper can be applied to the sliding mode control in discontinuous dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Filippov AF (1988) Differential equations with discontinuous righthand side. Kluwer Academic, Netherlands

    Book  Google Scholar 

  2. Kunze M, Küpper T, You J (1997) On the application of KAM theory to discontinuous dynamical systems. J Differ Equ 139(1):1–21

    Article  MathSciNet  MATH  Google Scholar 

  3. Cid JA, Sanchez L (2003) Periodic solutions for second order differential equations with discontinuous restoring forces. J Math Anal Appl 288(2):349–364

    Article  MathSciNet  MATH  Google Scholar 

  4. Jacquemard A, Teixeira MA (2012) Periodic solutions of a class of non-autonomous second order differential equations with discontinuous right-hand side. Physica D 241(22):2003–2009

    Article  MathSciNet  Google Scholar 

  5. Coll B, Gasull A, Prohens R (2001) Degenerate Hopf bifurcations in discontinuous planar systems. J Math Anal Appl 253(2):671–690

    Article  MathSciNet  MATH  Google Scholar 

  6. Küpper T, Moritz S (2001) Generalized Hopf bifurcation for non-smooth planar systems. Phil Trans R Soc Lond A 359:2483–2496

    Article  MathSciNet  MATH  Google Scholar 

  7. Zou Y, Küpper T, Beyn WJ (2006) Generalized Hopf bifurcation for planar Filippov systems continuous at the origin. J Nonlinear Sci 16:159–177

    Article  MathSciNet  MATH  Google Scholar 

  8. Akhmet MU (2005) Perturbations and Hopf bifurcation of the planar discontinuous dynamical system. Nonlinear Anal Theory 60(1):163–178

    Article  MathSciNet  MATH  Google Scholar 

  9. Han M, Zhang W (2010) On Hopf bifurcation in non-smooth planar system. J Differ Equ 248:2399–2416

    Article  MathSciNet  MATH  Google Scholar 

  10. Li L, Huang L (2014) Concurrent homoclinic bifurcation and Hopf bifurcation for a class of planar Filippov systems. J Math Anal Appl 411(1):83–94

    Article  MathSciNet  MATH  Google Scholar 

  11. Battelli F, Fečkan M (2012) Nonsmooth homoclinic orbits, Melnikov functions and chaos in discontinuous systems. Physica D 241:1962–1975

    Article  MathSciNet  Google Scholar 

  12. Leine RI, Van Campen DH, Van de Vrande BL (2000) Bifurcations in nonlinear discontinuous systems. Nonlinear Dyn 23(2):105–164

    Article  MathSciNet  MATH  Google Scholar 

  13. di Bernardo M, Kowalczyk P, Nordmark A (2002) Bifurcations of dynamical systems with sliding: derivation of normal-form mappings. Physica D 170(3–4):175–205

    Article  MathSciNet  MATH  Google Scholar 

  14. di Bernardo M, Kowalczyk P, Nordmark A (2003) Sliding bifurcations: a novel mechanism for the sudden onset of chaos in dry friction oscillators. Int J Bifur Chaos 13(10):2935–2948

    Article  MathSciNet  MATH  Google Scholar 

  15. Galvanetto U (2004) Sliding bifurcations in the dynamics of mechanical systems with dry friction-remarks for engineers and applied scientists. J Sound Vib 276(1–2):121–139

    Article  Google Scholar 

  16. Kowalczyk P, di Bernardo M (2005) Two-parameter degenerate sliding bifurcations in Filippov systems. Physica D 204(3–4):204–229

    Article  MathSciNet  MATH  Google Scholar 

  17. Kowalczyk P, Piiroinen PT (2008) Two-parameter sliding bifurcations of periodic solutions in a dry-friction oscillator. Physica D 237(8):1053–1073

    Article  MathSciNet  MATH  Google Scholar 

  18. Guardia M, Hogan SJ, Seara TM (2010) An analytical approach to codimension2 sliding bifurcations in the dry-friction oscillator. SIAM J Appl Dyn Syst 9(3):769C798

    Article  MATH  Google Scholar 

  19. Luo ACJ (2005) A theory for non-smooth dynamical systems on connectable domains. Commun Nonlinear Sci Numer Simul 10:1–55

    Article  MathSciNet  MATH  Google Scholar 

  20. Luo ACJ (2005) Imaginary, sink and source flows in the vicinity of the separatrix of non-smooth dynamic system. J Sound Vib 285:443–456

    Article  MathSciNet  MATH  Google Scholar 

  21. Luo ACJ (2006) Singularity and dynamics on discontinuous vector fields. Elsevier, Amsterdam

    MATH  Google Scholar 

  22. Luo ACJ (2011) On flow barriers and switchability in discontinuous dynamical systems. Int J Bifur Chaos 21(1):1–76

    Article  MathSciNet  MATH  Google Scholar 

  23. Luo ACJ (2005) The mapping dynamics of periodic motions for a three-piecewise linear system under a periodic excitation. J Sound Vib 283:723–748

    Article  MathSciNet  MATH  Google Scholar 

  24. Luo ACJ, Rapp BM (2009) Flow switchability and periodic motions in a periodically forced, discontinuous dynamical system. Nonlinear Anal Real 10(5):3028–3044

    Article  MathSciNet  MATH  Google Scholar 

  25. Luo ACJ, Rapp BM (2010) On motions and switchability in a periodically forced, discontinuous system with a parabolic boundary. Nonlinear Anal Real 11(14):2624–2633

    Article  MathSciNet  MATH  Google Scholar 

  26. Luo ACJ, Gegg BC (2006) Periodic motions in a periodically forced oscillator moving on an oscillating belt with dry friction. ASME J Comput Nonlinear Dyn 1:132–168

    MATH  Google Scholar 

  27. Luo ACJ, Gegg BC (2006) Dynamics of a periodically forced oscillator with dry friction on a sinusoidally time-varying traveling surface. Int J Bifur Chaos 16:3539–3566

    Article  MATH  Google Scholar 

  28. Gegg BC, Luo ACJ, Suh SC (2009) Sliding motions on a periodically time-varying boundary for a friction-induced oscillator. J Vib Control 15(5):671–703

    Article  MathSciNet  MATH  Google Scholar 

  29. Luo ACJ, Huang J (2012) Discontinuous dynamics of a non-linear, self-excited, friction-induced, periodically forced oscillator. Nonlinear Anal Real 13(1):241–257

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang ZF, Ding TR, Huang WZ, Dong ZX (1992) Qualitative theory of differential equations, vol 101. American Mathematical Society, Providence, RI

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert C. J. Luo.

Additional information

Research supported by National Natural Science Foundation of China (61473332) and Zhejiang Provincial Natural Science Foundation (LQ14A010009).

Appendix

Appendix

Consider second order differential equation in Eq. (2) with initial condition \((x_0, \dot{x}_0, t_0)\in R^3\), whose solution \((x^{(i)}(t; x_0, \dot{x}_0, t_0), \dot{x}^{(i)}(t; x_0, \dot{x}_0, t_0))\) (for simplicity, denote by \((x^{(i)}(t), \dot{x}^{(i)}(t))\)) in corresponding domains \(\Omega _i\) (\(i\in \{1, 2, 3\}\)) is given as follows.

Case 1      \(d_i^2>c_i\).

$$\begin{aligned} x^{(i)}(t)= & {} C_1^{(i)} \mathrm{e}^{\lambda _1^{(i)}(t-t_0)}+ C_2^{(i)} \mathrm{e}^{\lambda _2^{(i)}(t-t_0)}\\&+\,A^{(i)}\cos (\Omega t+\phi )+B^{(i)}\sin (\Omega t+\phi )+C^{(i)},\\ \dot{x}^{(i)}(t)= & {} \lambda _1^{(i)} C_1^{(i)} \mathrm{e}^{\lambda _1^{(i)}(t-t_0)}+\lambda _2^{(i)} C_2^{(i)} \mathrm{e}^{\lambda _2^{(i)}(t-t_0)}\\&-\,A^{(i)}\Omega \sin (\Omega t+\phi )+B^{(i)}\Omega \cos (\Omega t+\phi ), \end{aligned}$$

where \(\lambda _{1,2}^{(i)}=-d_i\pm \sqrt{d_i^2-c_i},\,\,\omega _d^{(i)}=\sqrt{d_i^2-c_i}\), and

$$\begin{aligned} A^{(i)}= & {} \frac{A_0(c_i-\Omega ^2)}{(c_i-\Omega ^2)^2+(2d_i\Omega )^2},\\ B^{(i)}= & {} \frac{2d_i\Omega A_0}{(c_i-\Omega ^2)^2+(2d_i\Omega )^2},\,\,\,\,C^{(i)}=-\frac{b_i}{c_i},\end{aligned}$$
$$\begin{aligned} C_1^{(i)}= & {} \frac{1}{2\omega _d^{(i)}}\left\{ -\left[ B^{(i)}\Omega +A^{(i)}(d_i+\omega _d^{(i)})\right] \cos (\Omega t_0+\phi )\right. \\&+\,\left[ A^{(i)}\Omega -B^{(i)}(d_i+\omega _d^{(i)})\right] \sin (\Omega t_0+\phi )\\&\left. -\,(d_i+\omega _d^{(i)})(C^{(i)}-x_0)+\dot{x}_0 \right\} ,\\ C_2^{(i)}= & {} \frac{1}{2\omega _d^{(i)}}\left\{ \left[ B^{(i)}\Omega +A^{(i)}(d_i-\omega _d^{(i)})\right] \cos (\Omega t_0+\phi )\right. \\&-\,\left[ A^{(i)}\Omega +B^{(i)}(-d_i+\omega _d^{(i)})\right] \sin (\Omega t_0+\phi )\\&\left. +\,(d_i-\omega _d^{(i)})(C^{(i)}-x_0)-\dot{x}_0 \right\} . \end{aligned}$$

Case 2     \(d_i^2<c_i\).

$$\begin{aligned} x^{(i)}(t)= & {} \left[ C_1^{(i)}\cos \omega _d^{(i)}(t-t_0)+ C_2^{(i)}\sin \omega _d^{(i)}(t-t_0) \right] \\&\times \,\mathrm{e}^{-d_i(t-t_0)}+\,A^{(i)}\cos (\Omega t+\phi )\\&+B^{(i)}\sin (\Omega t+\phi )+C^{(i)},\\ \dot{x}^{(i)}(t)= & {} \left[ (-d_iC_1^{(i)}+\omega _d^{(i)}C_2^{(i)})\cos \omega _d^{(i)}(t-t_0)\right. \\&\left. -\, (\omega _d^{(i)}C_1^{(i)}+d_iC_2^{(i)})\sin \omega _d^{(i)}(t-t_0)\right] \mathrm{e}^{-d_i(t-t_0)}\\&-\,A^{(i)}\Omega \sin (\Omega t+\phi )+B^{(i)}\Omega \cos (\Omega t+\phi ), \end{aligned}$$

where \(\omega _d^{(i)}=\sqrt{c_i-d_i^2}\), constants \(A^{(i)},\,\,B^{(i)}\) and \(C^{(i)}\) are the same as case 1), and

$$\begin{aligned} C_1^{(i)}= & {} x_0-\left[ A^{(i)}\cos (\Omega t_0\!+\!\phi )+B^{(i)}\sin (\Omega t_0+\phi )+C^{(i)}\!\right] \!, \\ C_2^{(i)}= & {} \frac{1}{\omega _d^{(i)}}\left[ \dot{x}_0-(A^{(i)}d_i+B^{(i)}\Omega )\cos (\Omega t_0+\phi )\right. \\&\left. +\,(A^{(i)}\Omega -B^{(i)}d_i)\sin (\Omega t_0+\phi )+d_i(x_0-C^{(i)})\right] . \end{aligned}$$

Case 3      \(d_i^2=c_i\).

$$\begin{aligned} x^{(i)}(t)= & {} [C_1^{(i)}+ C_2^{(i)}(t-t_0)]\mathrm{e}^{\lambda _1^{(i)}(t-t_0)}\\&+\,A^{(i)}\cos (\Omega t+\phi )+B^{(i)}\sin (\Omega t+\phi )+C^{(i)},\\ \dot{x}^{(i)}(t)= & {} [\lambda _1^{(i)}C_1^{(i)}+ C_2^{(i)}+\lambda _1^{(i)}C_2^{(i)}(t-t_0)]\mathrm{e}^{\lambda _1^{(i)}(t-t_0)}\\&-\,A^{(i)}\Omega \sin (\Omega t+\phi )+B^{(i)}\Omega \cos (\Omega t+\phi ), \end{aligned}$$

where \(\lambda _1^{(i)}=-2d_i\), constants \(A^{(i)},\,\,B^{(i)}\) and \(C^{(i)}\) are the same as case 1), and

$$\begin{aligned} C_1^{(i)}= & {} x_0-\left[ A^{(i)}\cos (\Omega t_0+\phi )\!+\!B^{(i)}\sin (\Omega t_0+\phi )+C^{(i)}\!\right] \!, \\ C_2^{(i)}= & {} \dot{x}_0-(A^{(i)}d_i+B^{(i)}\Omega )\cos (\Omega t_0+\phi )+(A^{(i)}\Omega \\&-\,B^{(i)}d_i)\sin (\Omega t_0+\phi )+d_i(x_0-C^{(i)}). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Luo, A.C.J. Periodic orbits and bifurcations in discontinuous systems with a hyperbolic boundary. Int. J. Dynam. Control 5, 513–529 (2017). https://doi.org/10.1007/s40435-016-0246-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-016-0246-x

Keywords

Navigation