Skip to main content
Log in

Nonlinear model-based parameter estimation and stability analysis of an aero-pendulum subject to digital delayed control

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

Digitization and time delay are known to modify the stability properties of feedback controlled systems. Although their effects have been widely investigated and they occur in most of the systems equipped with digital processors, they are usually neglected in industrial approaches, by virtue of the high sampling frequencies of modern processors. However, these approaches are not conservative with respect to stability. In this work, we investigate, first analytically, then numerically and experimentally, the stability properties of the so-called Aeropendulum. The Aeropendulum is a mechanical pendulum with a propeller at its free end. A motor, activating the propeller, allows an active control of the pendulum in a feedback loop. The system exhibits most of the difficulties encountered in more involved industrial robotic systems. The estimation of the parameter values is performed through a model-based estimation, which allows to successfully define damping coefficients of order zero, one and two. Stability charts obtained with different controllers are compared, showing the larger stability region obtainable with the act-and-wait controller under proper conditions, as predicted by the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Niculescu S-I (2001) Delay effects on stability: a robust control approach, vol 269. Springer, Berlin

    MATH  Google Scholar 

  2. Kovács LL, Kövecses J, Stépán G (2008) Analysis of effects of differential gain on dynamic stability of digital force control. Int J Non-Linear Mech 43(6):514–520

  3. Habib G, Rega G, Stepan G (2013) Stability analysis of a two-degree-of-freedom mechanical system subject to proportional-derivative digital position control. J Vib Control 21(8):1539–1555

  4. Stépán G (2001) Vibrations of machines subjected to digital force control. Int J Solids Struct 38(10):2149–2159

    Article  MATH  Google Scholar 

  5. Konishi K, Le LB, Hara N (2012) Stabilization of a steady state in oscillators coupled by a digital delayed connection. Eur Phys J B Condens Matter Complex Syst 85(5):1–6

    Article  Google Scholar 

  6. Krutova I (2001) Studying stability of the flexible spacecraft with a discrete control system. Autom Remote Control 62(12):1964–1977

    Article  MathSciNet  MATH  Google Scholar 

  7. Habib G, Rega G, Stépán G (2013) Nonlinear bifurcation analysis of a single-dof model of a robotic arm subject to digital position control. J Comput Nonlinear Dyn 8(1):011009

  8. Insperger T, Kovács LL, Galambos P, Stépán G (2010) Increasing the accuracy of digital force control process using the act-and-wait concept. Mechatron IEEE/ASME Trans 15(2):291–298

    Article  Google Scholar 

  9. Insperger T, Stépán G (2011) Semi-discretization for time-delay systems: stability and engineering applications, vol 178. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  10. Insperger T (2006) Act-and-wait concept for continuous-time control systems with feedback delay. Control Syst Technol IEEE Trans 14(5):974–977

    Article  Google Scholar 

  11. Insperger T, Wahi P, Colombo A, Stépán G, Di Bernardo M, Hogan S (2010) Full characterization of act-and-wait control for first-order unstable lag processes. J Vib Control 16(7–8):1209–1233

  12. Insperger T, Stépán G (2007) Act-and-wait control concept for discrete-time systems with feedback delay. Control Theory Appl IET 1(3):553–557

    Article  Google Scholar 

  13. Gawthrop P (2010) Act-and-wait and intermittent control: some comments. IEEE Trans Control Syst Technol 18(5):1195–1198

    Article  Google Scholar 

  14. Armstrong-Hélouvry B, Dupont P, De Wit CC (1994) A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica 30(7):1083–1138

    Article  MATH  Google Scholar 

  15. Heslot F, Baumberger T, Perrin B, Caroli B, Caroli C (1994) Creep, stick-slip, and dry-friction dynamics: experiments and a heuristic model. Phys Rev E 49(6):4973

    Article  Google Scholar 

  16. Bhushan B, Israelachvili JN, Landman U (1995) Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374(6523):607–616

    Article  Google Scholar 

  17. Persson BN (2000) Sliding friction: physical principles and applications, vol 1. Springer Science & Business Media, Berlin

    Book  MATH  Google Scholar 

  18. Berger E (2002) Friction modeling for dynamic system simulation. Appl Mech Rev 55(6):535–577

    Article  Google Scholar 

  19. Enikov ET, Campa G (2012) Mechatronic aeropendulum: demonstration of linear and nonlinear feedback control principles with matlab/simulink real-time windows target. Educ IEEE Trans 55(4):538–545

    Article  Google Scholar 

  20. Bouabdallah S, Noth A, Siegwart R (2004) Pid vs lq control techniques applied to an indoor micro quadrotor. In: Intelligent robots and systems, 2004 (IROS 2004). Proceedings. 2004 IEEE/RSJ international conference on, vol 3, pp 2451–2456, IEEE

  21. Madani T, Benallegue (2006) A Control of a quadrotor mini-helicopter via full state backstepping technique. In: Decision and control, 2006 45th IEEE conference on, pp 1515–1520, IEEE

  22. Frank A, McGrew J, Valenti M, Levine D, How JP (2007) Hover, transition, and level flight control design for a single-propeller indoor airplane. Defense Technical Information Center

  23. Spong MW, Corke P, Lozano R (2001) Nonlinear control of the reaction wheel pendulum. Automatica 37(11):1845–1851

    Article  MATH  Google Scholar 

  24. Alonso DM, Paolini EE, Moiola JL (2005) Global bifurcation analysis of a controlled underactuated mechanical system. Nonlinear Dyn 40(3):205–225

    Article  MathSciNet  MATH  Google Scholar 

  25. Aguilar LT, Boiko IM, Fridman LM, Freidovich LB (2012) Generating oscillations in inertia wheel pendulum via two-relay controller. Int J Robust Nonlinear Control 22(3):318–330

    Article  MathSciNet  MATH  Google Scholar 

  26. Senesh M, Wolf A, Gottlieb O (2010) Nonlinear model based estimation of rigid-body motion via an indirect measurement of an elastic appendage. J Vib Acoust 132(1):011007

    Article  Google Scholar 

  27. Gottlieb O, Habib G (2012) Non-linear model-based estimation of quadratic and cubic damping mechanisms governing the dynamics of a chaotic spherical pendulum. J Vib Control 18(4):536–547

    Article  MathSciNet  Google Scholar 

  28. Roberts JB (1985) Estimation of nonlinear ship roll damping from free-decay data. J Ship Res 29(2):127–138

    Google Scholar 

  29. Gottlieb O, Feldman M (1997) Application of a hilbert transform-based algorithm for parameter estimation of a nonlinear ocean system roll model. J Offshore Mech Arct Eng 119(4):239–243

    Article  Google Scholar 

  30. Slotine J-JE, Li W et al (1991) Applied nonlinear control, vol 60. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  31. Isidori A (1995) Nonlinear control systems, vol 1. Springer Science & Business Media, Berlin

    Book  MATH  Google Scholar 

  32. Van de Wouw N, Leine R (2004) Attractivity of equilibrium sets of systems with dry friction. Nonlinear Dyn 35(1):19–39

    Article  MathSciNet  MATH  Google Scholar 

  33. Habib G, Rega G, Stépán G (2014) Delayed digital position control of a single-dof system and the nonlinear behavior of the act-and-wait controller. J Vib Control. doi:10.1177/1077546314533583

Download references

Acknowledgments

This research was also supported by the Hungarian National Science Foundation under Grant No. OTKA 101714.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Habib.

Appendix: Transformation of the system into a map

Appendix: Transformation of the system into a map

In order to transform the continuous time system in Eq. (16) into the map in Eq. (17), Eq. (16) must be solved in closed form within a single time step. The PWM signal is constant within each sampling interval. Thus, once PWM is considered to be constant, \({\varOmega }(t)\), with \(t\in \left[ t_j,t_{j+1}\right) \) can be easily found, as the result of a first order linear differential equation. Substituting \({\varOmega }(t)\) into the first equation of Eq. (16) and solving the resultant linear differential equation, \(\phi (t)\), with \(t\in \left[ t_j,t_{j+1}\right) \) can be found. Considering the evolution of these functions from \(t_j\) to \(t_{j+1}\), the map in Eq. (17) can be defined. In the following, the explicit formulation of the coefficients of \(\mathbf {A}\) is given.

$$\begin{aligned}&a_{11}=e^{-\tau \omega _n\left( \hat{\delta } +\sqrt{\hat{\delta }^2-c_{\varphi _0}}\right) }\left( \frac{\hat{\delta }\left( e^{2\tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}}-1\right) }{2\sqrt{\hat{\delta }^2-c_{\varphi _0}}}+ \frac{1+e^{2\tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}}}{2}\right) \\&a_{12}=\frac{e^{-\hat{\delta }\tau \omega _n -\tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}}\left( e^{2\tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}}-1\right) }{2\tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}}\\&a_{13}=-\frac{1+\lambda \omega _n\left( \sqrt{\hat{\delta }^2-c_{\varphi _0}}-\hat{\delta }\right) + e^{2\tau \omega _n \sqrt{\hat{\delta }^2-c_{\varphi _0}}} \left( \lambda \omega _n\left( \sqrt{\hat{\delta }^2-c_{\varphi _0}}+\hat{\delta }\right) -1\right) }{\lambda ^{-1}e^{\hat{\delta }\tau \omega _n+ \tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}} \left( 2\omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}\left( 1 -2\hat{\delta }\lambda \omega _n+\lambda ^2\omega _n^2 c_{\varphi _0}\right) \right) }+\frac{\lambda ^2}{e^{\tau /\lambda } \left( 1 -2\hat{\delta }\lambda \omega _n+\lambda ^2\omega _n^2 c_{\varphi _0}\right) }\\&a_{14}= \sec \left( \varphi _0\right) \Bigg (\frac{\left( 2\hat{\delta }\lambda \omega _n-1\right) \hat{\delta }\left( e^{2\tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}}-1\right) }{e^{\hat{\delta }\tau \omega _n+ \tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}}\left( 2\omega _n^2\sqrt{\hat{\delta }^2 -c_{\varphi _0}} \left( 1-2\hat{\delta }\lambda \omega _n+ \lambda ^2\omega _n^2c_{\varphi _0}\right) \right) }\\&\quad +\frac{\left( 2\hat{\delta }\lambda \omega _n-1\right) \left( 1- 2e^{\hat{\delta }\tau \omega _n+\tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}} +e^{2\tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}}\right) }{e^{\hat{\delta }\tau \omega _n+ \tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}}2\omega _n^2 \left( 1-2\hat{\delta }\lambda \omega _n+ \lambda ^2\omega _n^2c_{\varphi _0}\right) }\\&\quad +\frac{\lambda ^2 c_{\varphi _0}}{1-2\hat{\delta }\lambda \omega _n +\lambda ^2\omega _n^2c_{\varphi _0}} +\frac{\lambda c_{\varphi _0}\left( e^{\tau /\lambda }-e^{\tau /\lambda +2\tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}} - 2e^{\hat{\delta }\tau \omega _n+ \tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}}\lambda \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}\right) }{e^{\tau /\lambda + \hat{\delta }\tau \omega _n+ \tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}} 2\omega _n\sqrt{\hat{\delta }^2 -c_{\varphi _0}} \left( 1-2\hat{\delta }\lambda \omega _n+ \lambda ^2\omega _n^2c_{\varphi _0}\right) }\Bigg ) \end{aligned}$$
$$\begin{aligned} a_{21}= & {} \frac{e^{-\hat{\delta }\tau \omega _n -\tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}}\left( 1-e^{2\tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}}\right) \tau \omega _n c_{\varphi _0}\sqrt{\hat{\delta }^2-c_{\varphi _0}}}{2\left( \hat{\delta }^2-c_{\varphi _0}\right) }\\ a_{22}= & {} \frac{e^{-\hat{\delta }\tau \omega _n -\tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}}}{2}\left( \frac{\hat{\delta }\left( 1-e^{2\tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}}\right) }{\sqrt{\hat{\delta }^2 -c_{\varphi _0}}} +1+e^{2\tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}}\right) \\ a_{23}= & {} \frac{\lambda \hat{\delta }^2\left( e^{\tau /\lambda }- 2e^{\hat{\delta }\tau \omega _n +\tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}}+e^{\tau /\lambda +2\tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}}\right) \tau }{e^{\tau /\lambda +\hat{\delta }\tau \omega _n +\tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}}2\left( \hat{\delta }^2 -c_{\varphi _0}\right) \left( 1-2\hat{\delta }\lambda \omega _n +\lambda ^2\omega _n^2c_{\varphi _0}\right) }\nonumber \\&-\frac{\lambda \tau \left( \left( \hat{\delta } e^{2\tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}}-\hat{\delta }+\lambda \omega _nc_{\varphi _0} \right) \sqrt{\hat{\delta }^2-c_{\varphi _0}}+c_{\varphi _0}\right) }{e^{\hat{\delta }\tau \omega _n +\tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}}2\left( \hat{\delta }^2 -c_{\varphi _0}\right) \left( 1-2\hat{\delta }\lambda \omega _n +\lambda ^2\omega _n^2c_{\varphi _0}\right) }\nonumber \\&+\frac{\lambda \tau c_{\varphi _0}\left( 2e^{\hat{\delta }\tau \omega _n} +e^{\tau /\lambda + \tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}} }\left( \lambda \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}-\tau \right) \right) }{e^{\tau /\lambda +\hat{\delta }\tau \omega _n}2\left( \hat{\delta }^2 -c_{\varphi _0}\right) \left( 1-2\hat{\delta }\lambda \omega _n+ \lambda ^2\omega _n^2c_{\varphi _0}\right) }\\ a_{24}= & {} -\frac{\left( e^{\tau /\lambda }- 2e^{\hat{\delta }\tau \omega _n+\tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}}+ e^{\tau /\lambda +2\tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}}\right) \lambda \tau }{e^{\tau /\lambda +\hat{\delta }\tau \omega _n + \tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}} 2\left( 1 -2\hat{\delta }\lambda \omega _n+\lambda ^2 \omega _n^2c_{\varphi _0}\right) }\nonumber \\&+\frac{\left( e^{2\tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}}-1\right) \tau \left( 1-\hat{\delta }\lambda \omega _n\right) }{e^{\hat{\delta }\tau \omega _n + \tau \omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}} 2\omega _n\sqrt{\hat{\delta }^2-c_{\varphi _0}}\left( 1 -2\hat{\delta }\lambda \omega _n+\lambda ^2 \omega _n^2c_{\varphi _0}\right) }\\ a_{33}= & {} e^{-\tau /\lambda }\\ a_{34}= & {} 1-e^{-\tau /\lambda } \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habib, G., Miklos, A., Enikov, E.T. et al. Nonlinear model-based parameter estimation and stability analysis of an aero-pendulum subject to digital delayed control. Int. J. Dynam. Control 5, 629–643 (2017). https://doi.org/10.1007/s40435-015-0203-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-015-0203-0

Keywords

Navigation