Skip to main content
Log in

Hyperchaos and bifurcations in a driven Van der Pol–Duffing oscillator circuit

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

We investigate the dynamics of a driven Van der Pol–Duffing oscillator circuit and show the existence of higher-dimensional chaotic orbits (or hyperchaos), transient chaos, strange-nonchaotic attractors, as well as quasiperiodic orbits born from Hopf bifurcating orbits. By computing all the Lyapunov exponent spectra, scanning a wide range of the driving frequency and driving amplitude parameter space, we explore in two-parameter space the regimes of different dynamical behaviours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baptista MS, Caldas IL (1998) Phase-locking and bifurcations of the sinusoidally-driven double scroll circuit. Nonlinear Dyn 17:119139

    Article  Google Scholar 

  2. Chua LO, Kocarev LJ, Eckert K, Itoh M (1992) Experimental chaos synchronization in Chua’s circuit. Int J Bifurc Chaos 2:705–708

    Article  MATH  Google Scholar 

  3. Elwakil AS, Kennedy MP (2001) Construction of classes of circuit independent chaotic oscillators using passive-only nonlinear. IEEE Trans Circ Syst 48:289–307

    Article  MathSciNet  MATH  Google Scholar 

  4. Elwakil AS, Soliman AM (1997) A family of Wien-type oscillators modified for chaos. Int J Circ Theor Appl 25:561–579

    Article  Google Scholar 

  5. Fodjouong GJ, Fotsin HB, Woafo P (2007) Synchronizing modified Van der Pol–Duffing oscillators with offset terms using observer design: application to secure communications. Phys Scr 75(5):638–644

    Article  MathSciNet  MATH  Google Scholar 

  6. Fotsin H, Bowong S, Daafouz J (2005) Adaptive synchronization of two chaotic systems consisting of modified Van der Pol–Duffing and Chua oscillators. Chaos Solitons Fractals 26(1):215–229

    Article  MathSciNet  MATH  Google Scholar 

  7. Fotsin HB, Woafo P (2005) Adaptive synchronization of a modified and uncertain chaotic Van der Pol–Duffing oscillator based on parameter identification. Chaos Solitons Fractals 24(5):1363–1371

    Article  MathSciNet  MATH  Google Scholar 

  8. Gomes MGM, King GP (1992) Bistable chaos. II. Unfolding the cusp. Phys Rev A 46:3100–31099

    Article  MathSciNet  Google Scholar 

  9. King GP, Gaito ST (1992) Bistable chaos. I. Unfolding the cusp. Phys Rev A 46:3092–3099

    Article  MathSciNet  Google Scholar 

  10. Ma J, Li AB, Pu ZS, Yang LJ, Wang YZ (2010) A time-varying hyperchaotic system and its realization in circuit. Nonlinear Dyn 62:535–541

    Article  MATH  Google Scholar 

  11. Madan RA (1993) Chua’s circuit: a paradigm for Chaos. World Scientific, Singapore

    MATH  Google Scholar 

  12. Maggio GM, Feo OD, Kennedy MP (1999) Nonlinear analysis of the Colpitts oscillator and applications to design. IEEE Trans Circ Syst 46:1118–1130

    Article  MATH  Google Scholar 

  13. Murali K, Lakshmanan M, Chua LO (1994) Bifurcation and chaos in the simplest dissipative non-autonomous circuit. Int J Bifurc Chaos 4(6):1511–1524

    Article  MATH  Google Scholar 

  14. Prebianca F, Albuquerque HA, Rubinger RM(2011) On the effect of a parallel resistor in the Chua’s circuit. In Dr Elbert Macau (ed), J Phys, Dynamics days South America 2010 international conference on chaos and nonlinear dynamics, 26–30 July 2010. vol 285 of Conf. Series. Institude of Physics, Europe, p 012005

  15. Sprott JC (2000) A new class of chaotic circuits. Phys Lett A 266:19–23

    Article  Google Scholar 

  16. Tchitnga R, Fotsin HB, Nana B, Louodop-Fotso PH, Woafo P (2012) Hartleys oscillator: the simplest chaotic two-component circuit. Chaos Solitons Fractals 45:306313

    Article  Google Scholar 

  17. Thamilmaran K, Lakshmanan M, Murali K (1994) Rich variety of bifurcations and chaos in a variant of Murali–Lakshmanan–Chua circuit. Int J Bifurc Chaos 10:1781–1785

    Article  Google Scholar 

  18. Vincent UE, Odunaike RK, Laoye JA, Gbindinninuola AA (2011) Adaptive backstepping control and synchronization of a modified and chaotic Van der Pol–Duffing oscillator. J Control Theory Appl 9(2):141–145

    Article  MathSciNet  Google Scholar 

  19. Moukam Kakmeni FM, Bowong S, Tchawoua C, Kaptouom E (2004) Strange attractors and chaos control in a Duffing–Van der Pol oscillator with two external periodic forces. J Sound Vib 277:783

    Article  MathSciNet  MATH  Google Scholar 

  20. Li X, Ji JC, Hansen CH, Tan C (2006) The response of a Duffing–Van der Pol oscillator under delayed feedback control. J Sound Vib 291(3–5):644–655

    Article  MathSciNet  MATH  Google Scholar 

  21. Matouk AE, Agiza HN (2008) Bifurcations, chaos and synchronization in ADVP circuit with parallel resistor. J Math Anal Appl 341:259–269

    Article  MathSciNet  MATH  Google Scholar 

  22. Braga DC, Mello LF, Messias M (2009) Bifurcation analysis of a Van der Pol–Duffing circuit with parallel resistor. Math Probl Eng 1–26:2009

    MathSciNet  Google Scholar 

  23. Stankovski T, Duggento A, McClintock PVE, Stefanovska A (2012) Inference of time-evolving coupled dynamical systems in the presence of noise. Phys Rev Lett. 109:024101

    Article  Google Scholar 

  24. Sun K, Liu X, Zhu C, Sprott JC (2012) Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system. Nonlinear Dyn 69:1383–1391

  25. Rössler OE (1979) An equation for hyperchaos. Phys Lett A 71(2–3):155–157

    Article  MathSciNet  MATH  Google Scholar 

  26. Cenys A, Tama\(\tilde{s}\)evicius A, Baziliauskas A, Krivickas R, Lindberg E (2003) Hyperchaos in coupled Colpitts oscillators. Chaos Solitons Fractals 17:349–353

  27. Yu S, Lu J, Chen G (2007) A family of n-scroll hyperchaotic attractors and their realization. Phys Lett A 364:244–251

    Article  Google Scholar 

  28. Aguilar-Bustos AY, Cruz-Hern\(\acute{a}\)ndez C, L\(\acute{o}\)pez-Gutirrez RM, Tlelo-Cuautle E, Posadas-Castillo C (2010) Emergent web intelligence: advanced information retrieval., Advanced information and knowledge processing, Springer, London

  29. Liao NH, Hu ZH (2012) A hybrid secure communication method based on synchronization of hyper-chaos systems. In: Tomar G, Mittal SSSS, Frank Z (eds) 2012 international conference on communication systems and network technologies, CSNT. Rajkot, IEEE Computer Society, IEEE Computer Society Conference Publishing Services, pp 289–293

    Google Scholar 

  30. Smaoui N, Karouma A, Zribib M (2011) Secure communications based on the synchronization of the hyperchaotic chen and the unified chaotic systems. Phys Scr 16:3279–3293

    MATH  Google Scholar 

  31. Grygiel K, Szlachetka P (1998) Hyperchaos in second-harmonic generation of light. Opt Commun 158:112–118

    Article  Google Scholar 

  32. Dou FQ, Sun JA, Duan WS (2008) Anti-synchronization in different hyperchaotic systems. Commun Theor Phys 50:907

    Article  Google Scholar 

  33. Zhou X, Kong B, Ding H (2012) Synchronization and anti-synchronization of a new hyperchaotic l system with uncertain parameters via the passive control technique. Phys Scr 85:065004

    Article  Google Scholar 

  34. Liu Y, Yang Q, Pang G (2010) A hyperchaotic system from the Rabinovich system. J Comput Appl Math 234:101–113

    Article  MathSciNet  MATH  Google Scholar 

  35. Sliwa I, Grygiel K, Szlachetka P (2008) Hyperchaotic beats and their collapse to the quasiperiodic oscillations. Nonlinear Dyn 53:13–18

    Article  MATH  Google Scholar 

  36. Hayashi C (1964) Nonlinear oscillations in physical systems. McGraw-Hill, New York

    MATH  Google Scholar 

  37. Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a time series. Phys D 16:285–317

    Article  MathSciNet  MATH  Google Scholar 

  38. Grebogi C, Ott E, Yorke JA (1982) Chaotic attractors in crisis. Phys Rev Lett 48:1507–1510

    Article  MathSciNet  Google Scholar 

  39. Grebogi C, Ott E, Yorke JA (1983) Crises, sudden changes in chaotic attractors and transient chaos. Phys D 7:181–200

    Article  MathSciNet  Google Scholar 

  40. Ott E (2002) Chaos in dynamical systems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  41. Ueda Y (2001) The road to chaos - II. Future University Press, Hakodate

    Google Scholar 

  42. García-Álvarez D, Stefanovska A, McClintock PVE (2008) High-order synchronization, transitions, and competition among arnold tongues in a rotator under harmonic forcing. Phys Rev E 77:056203

    Article  Google Scholar 

  43. Ruhunusiri WDS, Goree J (2012) Synchronization mechanism and arnold tongues for dust density waves. Phys Rev E 85:046401

    Article  Google Scholar 

  44. Matouk AE (2011) Chaos, feedback control and synchronization of a fractional-order modified autonomous Van der Pol–Duffing circuit. Commun Nonlinear Sci Numer Simul 16:975–986

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

UEV is supported by the Royal Society of London through the Newton International Fellowship Alumni Scheme. BRN is grateful to Brazilian Government (CNPq) for financial support within the project CNPq/PROAFRICA 490265/2010-3. We acknowledge the comments of reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. E. Vincent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vincent, U.E., Nana Nbendjo, B.R., Ajayi, A.A. et al. Hyperchaos and bifurcations in a driven Van der Pol–Duffing oscillator circuit. Int. J. Dynam. Control 3, 363–370 (2015). https://doi.org/10.1007/s40435-014-0118-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-014-0118-1

Keywords

Navigation