Skip to main content
Log in

Magnetohydrodynamic micropolar nanofluid past a permeable stretching/shrinking sheet with Newtonian heating

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this present study, a numerical investigation has been carried out to discuss the steady, two dimensional flow and heat transfer on micropolar nanofluid over a stretching/shrinking sheet with variable suction or injection in the presence of magnetic field and Newtonian heating. Copper (\( {\text{Cu}} \)), alumina (\( {\text{Al}}_{ 2} {\text{O}}_{ 3} \)) and titanium (\( {\text{TiO}}_{ 2} \)) in water-based micropolar nanofluid has been considered for the present investigation. The solutions of the transformed nonlinear equations have been obtained using Runge–Kutta–Gill procedure together with the shooting method. The results are presented graphically and discussed for various resulting parameters. Dual solutions are found to exist in a certain range of the governing parameters. The thickness of thermal boundary layer for Cu nanofluid is more than that of other nanofluids in the cases of shrinking and stretching sheets. Newtonian heating effect significantly increases the thermal boundary layer thickness for both sheets under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\( B_{0} \) :

Magnetic induction (T)

\( c \) :

Constant defined by Eq. (2.8)

\( C_{f} \) :

Skin friction coefficient

\( C_{{n}} \) :

Wall couple stress

\( c_{\text{p}} \) :

Specific heat at constant pressure (J/kg K)

\( f \) :

Dimensionless stream function

\( f_{w} \) :

Suction/injection parameter

\( g \) :

Dimensionless micro rotation

\( h \) :

Convective heat transfer coefficient

\( j \) :

Microinertia density

\( K \) :

Micropolar or material parameter

\( k \) :

Thermal conductivity (W/mK)

\( M \) :

Magnetic parameter

\( n \) :

Constant defined by Eq. (2.5)

N :

Microrotation component

\( Nu_{x} \) :

Local Nusselt number

\( Pr \) :

Prandtl number

\( q_{w} \) :

Surface heat flux (W/m2)

\( Re_{x} \) :

Local Reynolds number

\( T \) :

Temperature of the fluid (°C)

\( u_{w} \) :

Stretching velocity

\( u,v \) :

Velocity components (m/s)

\( v_{w} \) :

Mass transfer velocity

\( x,y \) :

Dimensionless coordinates

\( \alpha \) :

Thermal diffusivity (m2/s)

\( \gamma \) :

Conjugate parameter for Newtonian heating

\( \delta \) :

Spin-gradient viscosity

\( \eta \) :

Similarity variable

\( \theta \) :

Dimensionless temperature

\( \kappa \) :

Vortex viscosity

\( \lambda \) :

Stretching/shrinking parameter

\( \mu \) :

Thermal viscosity (kg s/m)

\( \upsilon \) :

Kinematic viscosity (m2/s)

\( \rho \) :

Density (kg/m3)

\( \sigma \) :

Electrical conductivity (s/m)

\( \tau_{w} \) :

Wall shear stress

\( \phi \) :

Nanoparticle volume fraction

\( \psi \) :

Stream function (m2/s)

\( f \) :

Base fluid

nf:

Nanofluid

s:

Solid

w:

Condition at the surface

\( \infty \) :

Condition at infinity

′:

Differentiation with respect to \( \eta \)

References

  1. Ahmadi G (1976) Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate. Int J Eng Sci 14:639–646

    Article  MATH  Google Scholar 

  2. Arafa AA, Gorla RSR (1992) Mixed convection boundary layer flow of a micropolar fluid along vertical cylinders and needles. Int J Eng Sci 30:1745–1751

    Article  MATH  Google Scholar 

  3. Baag S, Mishra SR (2015) Heat and mass transfer analysis on MHD 3-D water-based nanofluid. J Nanofluids 4:1–10

    Article  Google Scholar 

  4. Bourantas GC, Loukopoulos VC (2014) MHD natural convection flow in a inclined square enclosure filled with a micropolar nanofluid. Int J Heat Mass Transf 29:930–944

    Article  Google Scholar 

  5. Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20:571

    Article  Google Scholar 

  6. Buongiorno J (2006) Convective transport in nanofluids. ASME J Heat Transf 128:240–250

    Article  Google Scholar 

  7. Chaudhary RC, Jain P (2007) An exact solution to the unsteady free convection boundary layer flow past an impulsively started vertical surface with Newtonian heating. J Eng Phys Thermophys 80:954–960

    Article  Google Scholar 

  8. Choi SU (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ Fed 231:99–106

    Google Scholar 

  9. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254

    Article  Google Scholar 

  10. Cramer KR, Pai SI (1973) Magnetofluid dynamics for engineers and applied physicists. McGraw-Hill, New York

    Google Scholar 

  11. Das S, Jana RN (2015) Natural convective magneto-nanofluid flow and radiative heat transfer past a moving vertical plate. Alex Eng J 54:55–64

    Article  Google Scholar 

  12. El-Dabe NT, Ghaly AY, Rizkallah RR, Ewis KM, Al-Bareda AS (2015) Numerical solution of MHD boundary layer flow of non-Newtonian Casson fluid on a moving wedge with heat and mass transfer and induced magnetic field. J Appl Math Phys 3:649–663

    Article  Google Scholar 

  13. Erignen AC (1966) Theory of micropolar fluids. J Math Mech 16:1–18

    MathSciNet  Google Scholar 

  14. Erignen AC (1972) Theory of thermomicrofluids. J Math Appl 38:480–496

    MATH  Google Scholar 

  15. Fauzi ELA, Ahmad S, Pop I (2014) Flow over a permeable stretching sheet in micropolar nanofluids with suction. In: Proceedings of the 21st national symposium on mathematical sciences (SKSM21): Germination of Mathematical Sciences Education and Research towards Global Sustainability 1605: 428–433

  16. Gireesha BJ, Gorla RSR, Mahanthesh B (2015) Effect of suspended nanoparticles on three-dimensional MHD flow, heat and mass transfer of radiating Eyring–Powell fluid over a stretching sheet. J Nanofluids 4:1–11

    Article  Google Scholar 

  17. Hayat T, Awais M, Asghar S (2013) Radiative effects in a three-dimensional flow of MHD Eyring–Powell fluid. J Egypt Math Soc 21:379–384

    Article  MATH  MathSciNet  Google Scholar 

  18. Hayat T, Nawaz M (2010) Magnetohydrodynamic three-dimensional flow of a second-grade fluid with heat transfer. Z Naturforsch 65:683–691

    Google Scholar 

  19. Jat RN, Jhankal AK (2003) Three-dimensional free convective MHD flow and heat transfer through a porous medium. Indian J Eng Mater Sci 10:138–142

    MATH  Google Scholar 

  20. Jena SK, Mathur MN (1981) Similarity solutions for laminar free convection flow of a thermomicropolar fluid past a non-isothermal vertical flat plate. Int J Eng Sci 19:1431–1439

    Article  MATH  Google Scholar 

  21. Kar M, Dash GC, Sahoo SN, Rath PK (2013) Three-dimensional free convection MHD flow in a vertical channel through a porous medium with heat source and chemical reaction. J Eng Thermodyn 22:203–215

    Article  Google Scholar 

  22. Khan A, Khan I, Shafie S (2016) Effects of Newtonian heating and mass diffusion on MHD free convection flow over vertical plate with shear stress at the wall. J Teknol 78:71–75

    Google Scholar 

  23. Kumar A, Unny TE (1977) Application of Runge–Kutta method for the solution of non-linear partial differential equations. Appl Math Model 1(4):199–204

    Article  MATH  MathSciNet  Google Scholar 

  24. Makinde OD, Aziz A (2011) Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int J Therm Sci 50:1326–1332

    Article  Google Scholar 

  25. Makinde OD, Mishra SR (2015) On stagnation point flow of variable viscosity nanofluids past a stretching surface with radiative heat. Int J Appl Comput Math 1:1–18

    Google Scholar 

  26. Merkin JH (1985) On dual solutions occurring in mixed convection in a porous medium. J Eng Math 20(2):171–179

    Article  MATH  MathSciNet  Google Scholar 

  27. Merkin JH (1994) Natural convection boundary layer flow on a vertical surface with Newtonian heating. Int J Heat Fluid Flow 15:392–398

    Article  Google Scholar 

  28. Mohamed MKA, Salleh MZ, Nazar R, Ishak A (2012) Stagnation point flow over a stretching sheet with Newtonian heating. Sains Malays 41:1467–1473

    Google Scholar 

  29. Nadeem S, Rehman A, Vajravelu K, Lee J, Lee C (2012) Axisymmetric stagnation flow of a micropolar nanofluid in a moving cylinder. Math Probl Eng 2012:1–18

    MATH  MathSciNet  Google Scholar 

  30. Nazar R, Ishak A, Pop I (2008) Unsteady boundary layer flow over a stretching sheet in a micropolar fluid. Int J Math Phys Eng Sci 2:161–165

    Google Scholar 

  31. Nazar R, Noor A, Jafar K, Pop I (2014) Stability analysis of three-dimensional flow and heat transfer over a permeable shrinking surface in a Cu–water nanofluid. Int J Math Comput Phys Electr Comput Eng 8:776–782

    Google Scholar 

  32. Noor NFM, Haq RU, Nadeem S, Hashim I (2015) Mixed convection stagnation point flow of a micropolar nanofluid along a vertically stretching surface with slip effects. Mechanica 50:2007–2022

    Article  Google Scholar 

  33. Oztop HF, Abu-Nada E (2008) Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int J Heat Fluid Flow 29:1326–1336

    Article  Google Scholar 

  34. Peddieson J (1972) An application of the micropolar fluid model to the calculation of a turbulent shear flow. Int J Eng Sci 10:23–32

    Article  Google Scholar 

  35. Rajagopal K, Veena PH, Pravin VK (2013) Unsteady three-dimensional MHD flow due to impulsive motion with heat and mass transfer past a stretching sheet in a saturated porous medium. Int J Appl Mech Eng 18:137–151

    Article  Google Scholar 

  36. Ralston A, Wilf HS (Eds.) (1976) Mathematical methods for digital computers (Vol. 1). John Wiley & Sons

  37. Ram Reddy C, Pradeepa T, Srinivasacharya D (2015) Similarity solution for free convection flow of a micropolar fluid under convective boundary condition via lie scaling group transformations. Adv High Energy Phys 2015:1–16

    Article  MATH  MathSciNet  Google Scholar 

  38. Ramzan M (2015) Influence of Newtonian heating on three-dimensional MHD flow of couple stress nanofluid with viscous dissipation and joule heating. PLoS One 10(4):e0124699

    Article  Google Scholar 

  39. Rehman A, Nadeem S (2012) Mixed convection heat transfer in micropolar nanofluid over a vertical slender cylinder. Chin Phys Lett 29:124701

    Article  Google Scholar 

  40. Rosca AV, Pop I (2013) Flow and heat transfer over a vertical permeable stretching/shrinking sheet with a second order slip. Int J Heat Mass Transf 60(1):355–364

    Article  Google Scholar 

  41. Sharma R, Ishak A, Pop I (2014) Stability analysis of magnetohydrodynamic stagnation-point flow toward a stretching/shrinking sheet. Comput Fluids 102:94–98

    Article  Google Scholar 

  42. Turkyilmazoglu M (2012) Three dimensional MHD stagnation flow due to a stretchable rotating disk. Int J Heat Mass Transf 55:6959–6965

    Article  Google Scholar 

  43. Weidman PD, Kubitschek DG, Davis AMJ (2006) The effect of transpiration on self-similar boundary layer flow over moving surfaces. Int J Eng Sci 44(11–12):730–737

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the reviewers for their constructive comments and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kannan.

Additional information

Technical Editor: Jader Barbosa Jr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangadhar, K., Kannan, T. & Jayalakshmi, P. Magnetohydrodynamic micropolar nanofluid past a permeable stretching/shrinking sheet with Newtonian heating. J Braz. Soc. Mech. Sci. Eng. 39, 4379–4391 (2017). https://doi.org/10.1007/s40430-017-0765-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-017-0765-1

Keywords

Navigation