Skip to main content

Advertisement

Log in

Application of a hybrid Taguchi-entropy weight-based GRA method to optimize and neural network approach to predict the machining responses in ultrasonic machining of Ti–6Al–4V

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The present study was carried out to perform predictive modelling of material removal rate (MRR) and tool wear rate (TWR) during ultrasonic machining (USM) of titanium (Ti) alloy (Ti–6Al–4V) by realizing an optimum artificial neural network (ANN) created by exploring the effect of two different learning algorithms with varied number of neurons in hidden layer. Experimental studies were carried out to explore the effect of various process parameters of ultrasonic machining on response variables MRR and TWR. The basic nature of USM makes these two variables a conflicting one and, therefore, an entropy weight-based grey relational method was used to optimize the process for the two response variables. It was found that the ANN-based predictive results were very closely related to actual experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Thoe TB, Aspinwall DK, Wise MLH (1998) Review on ultrasonic machining. Int J Mach Tools Manuf 38(4):239–255

    Article  Google Scholar 

  2. Lin YC, Yan BH, Chang YS (2000) Machining characteristics of Ti alloy (Ti–6Al–4V) using a combination process of EDM with USM. J Mater Process Technol 104:171–177

    Article  Google Scholar 

  3. Wansheng Z, Zhenlong W, Shichun D, Guanxin C, Hongyu W (2002) Ultrasonic and electric discharge machining of deep and small hole in Ti alloy. J Mater Process Technol 120:101–106

    Article  Google Scholar 

  4. Churi NJ, Li ZC, Pei ZJ, Treadwell C (2005) Rotary ultrasonic machining of Ti alloy: a feasibility study. In: Proceedings of IMECE 2005 ASME, Orlando, Florida, USA November 5–11

  5. Churi NJ, Pei ZJ, Treadwell C (2007) Rotary ultrasonic machining of Ti alloy (Ti–6Al–4V): effect of tool variables. Int J Precis Technol 1(1):85–96

    Article  Google Scholar 

  6. Singh R, Khamba JS (2006) Machining of Ti and its alloys: a review. J Mater Process Technol 173:125–135

    Article  Google Scholar 

  7. Dwiivedi A, Kumar P (2007) Surface quality evaluation of ultrasonic drilling through Taguchi technique. Int J Adv Manuf Technol 34:131–140

    Article  Google Scholar 

  8. Singh R, Khamba JS (2007) Investigation for ultrasonic machining of Ti and its alloys. J Mater Process Technol 183:363–367

    Article  Google Scholar 

  9. Singh R, Khamba JS (2007) Macromodel for ultrasonic machining of Ti and its alloys: designed experiments. J Eng Manuf IMechE Part B 221:221–229

    Article  Google Scholar 

  10. Kumar J, Khamba JS, Mohapatra SK (2008) An investigation into the machining characteristics of Ti using ultrasonic machining. Int J Mach Mach 3(1–2):143–161

    Google Scholar 

  11. Dhuria GK, Singh R, Batish A (2011) Ultrasonic machining of Ti and its alloys: a state of art review and future perspective. Int J Mach Mach Mater 10(4):326–355

    Google Scholar 

  12. Mohan Lal D, Renganarayanan S, Kalanidhi A (2001) Cryogenic treatment to augment wear resistance of tool and die steels. Cryogenics 41:149–155

    Article  Google Scholar 

  13. Baron FR (1974) Yes—cryogenic treatment can save you money! Here’s why. Tapi 57(5):35–40

    Google Scholar 

  14. Paulin P (1993) Frozen gears. Gear Technol 10(2):26–28

    Google Scholar 

  15. Huang JY, Zhu YT, Liao XZ, Beyerlein IJ, Bourke MA, Mitchell TE (2003) Microstructure of cryogenic treated M2 tool steels. Mater Sci Eng A399:241–244

    Article  Google Scholar 

  16. Yuan-zhi Z, Zhi-min Y, Yong Z, Quan-Feng L, WenShang F (2008) Effects of cryogenic treatment on material properties and microstructure of Fe–Cr–Mo–Ni–C–Co alloy. J Cent South Univ Technol 15:454–458

    Article  Google Scholar 

  17. Das D, Dutta AK, Ray KK (2008) On enhancement of wear resistance of tool steels by cryogenic treatment. Philos Mag Lett 88(11):801–811

    Article  Google Scholar 

  18. Cajner F, Leskovesk V, Landek D, Cajner H (2009) Effect of deep cryogenic treatment on high speed steel properties. Mater Manuf Process 24(7):743–746

    Article  Google Scholar 

  19. Joseph Vimal A, Bensely A, Mohan Lal D, Srinivasan K (2008) Deep cryogenic treatment improves wear resistance of En31 steel. Mater Manuf Process 23(4):369–376

    Article  Google Scholar 

  20. Das D, Datta AK, Toppo V, Ray KK (2007) Effect of deep cryogenic treatment on the carbide precipitation and tribological behavior. Mater Manuf Process 22(4):474–480

    Article  Google Scholar 

  21. da Silva FJ, Franco SD, Machado AR, Ezugwu EO, Souza AM Jr (2006) Performance of cryogenically treated HSS tools. Wear 261:675–685

    Article  Google Scholar 

  22. Das D, Ray KK (2012) On the mechanism of wear resistance enhancement of tool steels by cryogenic treatment. Philos Mag Lett 92(6):295–303

    Article  Google Scholar 

  23. Senthilkumar D, Rajendran I (2012) Optimization of deep cryogenic treatment to reduce wear loss of 4140 steel. Mater Manuf Process 27(5):567–572

    Article  Google Scholar 

  24. Amini K, Akhbarizadeh A, Javadpour S (2012) Effect of deep cryogenic treatment on formation of nano sized carbide and the wear behavior of D2 tool steel. Int J Miner Metall Mater 19(9):795–799

    Article  Google Scholar 

  25. Kim JW, Griggs JA, Regan JD, Ellis RA, Cai Z (2005) Effect of cryogenic treatment on nickel Ti endodontic instruments. Int Endod J 38(6):364–371

    Article  Google Scholar 

  26. Kumar J, Khamba JS (2010) Modeling the material removal rate in ultrasonic machining of Ti using dimensional analysis. Int J Adv Manuf Technol 48:103–119

    Article  Google Scholar 

  27. Kumar V, Khamba JS (2009) Parametric optimization of ultrasonic machining of co-based superalloy using the Taguchi multi-objective approach. Prod Eng Res Develop 3:417–425

    Article  Google Scholar 

  28. Kataria R, Kumar J, Pabla BS (2016) Experimental investigation and optimization of machining characteristics in ultrasonic machining of WC–Co composite using GRA method. Mater Manuf Process 31(5):685–693

    Article  Google Scholar 

  29. Kumar J, Khamba JS (2008) An experimental study on ultrasonic machining of pure titanium using designed experiments. J Braz Soc Mech Sci Eng 30(3):231–238

    Article  Google Scholar 

  30. Kaixuan G, Zhang H, Zhao B, Wang J, Zhou Y, Li Z (2013) Effect of cryogenic treatment and aging treatment on the tensile properties and microstructure of Ti–6Al–4V alloy. Mater Sci Eng A 584:170–176

    Article  Google Scholar 

  31. Molinari A, Pellizzari M, Gialanella S, Straffelini G, Staisny KH (2001) Effect of deep cryogenic treatment on mechanical properties of tool steels. J Mater Process Technol 118(1–3):350–355

    Article  Google Scholar 

  32. Prieto G, Perez Ipina JE, Tuckart WR (2014) Cryogenic treatments on AISI420 stainless steel: microstructure and mechanical properties. Mater Sci Eng A605:236–243

    Article  Google Scholar 

  33. Sivasankar S, Jeyapaul R (2012) Application of grey entropy and regression analysis for modelling and prediction on tool materials performance during EDM of hot pressed ZrB2 at different duty cycles. Procedia Eng 38:3977–3991

    Article  Google Scholar 

  34. Wen KL, Chang TC (1998) The grey entropy and its application in weighting analysis. Proc IEEE Int Conf Syst Man Cybern 2:1842–1844

    Google Scholar 

  35. Singh R, Khamba JS (2009) Mathematical modeling of tool wear rate in ultrasonic machining of Ti. Int J Adv Manf Technol 45(5–6):573–580

    Article  Google Scholar 

  36. Vijay Kumar K, Naveen Sait A (2014) Modelling and optimization of machining parameters for composite pipes using artificial neural network and genetic algorithm. Int J Interact Des Manuf. doi:10.1007/s12008-014-0253-0

  37. Kumar S, Batish A, Singh R, Singh TP (2014) A hybrid Taguchi-artificial neural network approach to predict surface roughness during electric discharge machining of Ti alloys. J Mech Sci Technol 28(7):2831–2844

    Article  Google Scholar 

  38. Krishna Mohana Rao G, Rangajanardhaa G, Hanumantha Rao D, Sreenivasa Rao M (2009) Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm. J Mater Process Technol 209:1512–1520

    Article  Google Scholar 

  39. Pandey AK, Dubey AK (2013) Modeling and optimization of kerf taper and surface roughness in laser cutting of Ti alloy sheet. J Mater Sci Technol 27(7):2115–2124

    Google Scholar 

  40. Sahu SN (2012) Neural network modelling and multi-objective optimization of EDM process. Thesis, NIT Rourkela

  41. Kara F, Aslantas K, Cicek A (2015) ANN and multiple regression method based modelling of cutting forces in orthogonal machining of AISI 316L stainless steel. Neural Comput Appl 26:237–250

    Article  Google Scholar 

  42. Kant G, Sangwan KS (2015) Predictive modelling and optimization of machining parameters to minimize surface roughness using artificial neural network coupled with genetic algorithm. Procedia CIRP 31:453–458

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupinder Singh.

Additional information

Technical Editor: Márcio Bacci da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhuria, G.K., Singh, R. & Batish, A. Application of a hybrid Taguchi-entropy weight-based GRA method to optimize and neural network approach to predict the machining responses in ultrasonic machining of Ti–6Al–4V. J Braz. Soc. Mech. Sci. Eng. 39, 2619–2634 (2017). https://doi.org/10.1007/s40430-016-0627-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-016-0627-2

Keywords

Navigation